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Abstract  1 

17α-ethynylestradiol (EE2), which is used in oral contraceptives and hormone 2 

replacement therapy, is a well documented estrogenic endocrine disruptor and an 3 

aquatic contaminant. In the present study, adult male specimens of the marine 4 

hermaphrodite teleost gilthead (Sparus aurata L.) were fed a diet containing tamoxifen 5 

(Tmx), an estrogen receptor ligand used in cancer therapy, alone or combined with EE2, 6 

for 25 days and then fed a commercial diet for a further 25 days (recovery period). The 7 

effects of short (5 days) and long (25 days) treatments on several reproductive and 8 

gonad immune parameters and the reversibility of the disruptive effects after the 9 

recovery period were examined. Our data showed that Tmx acted as an estrogenic 10 

endocrine disruptor as revealed by the increase in the hepatic transcription of the 11 

vitellogenin gene in males, the serum levels of 17β-estradiol and the gonad expression 12 

levels of the estrogen receptor α  and G protein-coupled estrogen receptor genes, and the 13 

recruitment of leukocytes into the gonad, a well known estrogenic-dependent process in 14 

gilthead seabream males. On the other hand, Tmx also increased sperm concentration 15 

and motility as well as the serum levels of androgens and the expression levels of genes 16 

that codify for androgenic enzymes, while decreasing the expression levels of the gene 17 

that code for gonadal aromatase. When applied simultaneously, Tmx and EE2 could act 18 

in synergy or counteract, each other, depending on the parameter measured. The 19 

disruptive effect of EE2 and/or Tmx was not reversible after a 25 day recovery period. 20 

 21 

Keywords:  Tamoxifen, 17α-ethynylestradiol, endocrine disruption reversibility, 22 

spermatogenesis, steroidogenesis, gilthead seabream.  23 

 24 

Summary statement 25 

In gilthead seabream males, Tmx disrupts the reproductive process including the gonad 26 

immune response and counteracts or enhances the effects of EE2. A 25-day recovery 27 

period did not reverse these effects in adult males. 28 
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Introduction 1 

Endocrine disrupting chemicals (EDCs) exert their effects via agonistic/antagonistic 2 

interactions with hormone receptors or by interfering with the normal synthesis, 3 

transport, metabolism, and secretion of endogenous hormones (Segner et al., 2006). 4 

Among EDCs, the most studied are the compounds that interfere with estrogen 5 

receptors (ERs), which have hazardous and estrogenic effects on fish reproduction 6 

(Folmar et al., 1996; Jobling et al., 1998, 2002; Hassanin et al., 2002; Penáz et al., 7 

2005). Some of these compounds are pharmaceutical products released in waste waters 8 

which reach the aquatic environment through sewage treatment effluents (Mills and 9 

Chichester, 2005). 10 

In the group of estrogenic EDCs, 17α-ethynylestradiol (EE2), a major constituent 11 

of contraceptive pills (Owen and Jobling, 2012), has a higher binding affinity to ERs 12 

than natural 17β-estradiol (E2) (Blair et al., 2000) and is one of the most potent 13 

compounds in the aquatic environment. Low concentrations of EE2 (3-17 ng/L) are 14 

sufficient to induce vitellogenin (Vtg) production in male fish (Holbech et al., 2001; 15 

Rose et al., 2002; Andersen et al., 2003), to modify sexual behaviour (Coe et al., 2010; 16 

Reyhanian et al., 2011; Filby et al., 2012) and to disrupt the reproductive capacities of 17 

fish (Nash et al., 2004; Pawlowski et al., 2004; Fenske et al., 2005; Schäfers et al., 18 

2007). However, the ability of fish to recover from estrogen exposure has drawn little 19 

attention, apart from some studies on sexual differentiation and reproductive capacity 20 

(Hill and Janz, 2003; Nash et al., 2004; Schäfers et al., 2007; Larsen et al., 2009; 21 

Baumann et al., 2014). 22 

 Other EDCs is tamoxifen (Tmx) which is widely used as a drug in cancer 23 

therapy. Studies in humans have shown that approximately 65% of administered Tmx is 24 

excreted with faeces, while its active metabolite OH-Tmx is excreted with bile and 25 

urine. Tmx is a nuclear ER ligand which in mammals, acts as estrogen agonist on some 26 

cell types but as an antagonist or partial agonist on others, which reflects the diversity of 27 

the mechanisms that mediate ER actions in different tissues (Fitts et al., 2011). In 28 

addition, Tmx acts as an agonist on the G protein-coupled estrogen receptor (GPER), a 29 

transmembrane receptor that mediates rapid responses of estrogen and is widely 30 

expressed in estrogen target tissues (Revankar et al., 2005), including fish testis and 31 

ovary (Liu et al., 2009; Pang and Thomas, 2010). However, the effects of Tmx and its 32 

action mechanisms in fish are just beginning to be understood, in part because of the 33 

interest that binary mixtures of EDCs has attracted in the recent years (Sun et al., 2009, 34 
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2011a, 2011,b). Such studies have been performed in gonochoristic fish and showed 1 

that the estrogenic or anti-estrogenic effects of Tmx depend on the gender, 2 

concentration and tissue analyzed (Leaños-Castañeda et al., 2002; Chikae et al., 2004; 3 

Sun et al., 2011a, 2011b). Tmx treatment leads to the masculinization of genetic female 4 

fish (Kitano et al., 2007; Hulak et al., 2010; Liu et al., 2010). Moreover and although 5 

the effects of Tmx mask or neutralize many signs of estrogen exposure, the impairment 6 

of the fish reproductive process is not restored (Santos et al., 2006; Elias et al., 2007; 7 

van der Ven et al., 2007; Sun et al., 2009). To the best of our knowledge, no such 8 

studies have been studied in hermaphrodite fish such as gilthead seabream.  9 

 The gilthead seabream (Sparus aurata L.) is a marine, seasonally breeding, 10 

protandrous teleost that develop a functional testicular area near by an immature 11 

previtellogenic ovary during the first two reproductive cycles. We have recently 12 

reported that EE2 dietary intake increases the hepatic expression levels of vtg, disrupts 13 

spermatogenesis and promotes leukocyte infiltration in the gonad (Cabas et al., 2011, 14 

2013), a physiological process needed for gonad renewal after spawning (Chaves-Pozo 15 

et al, 2005a, 2005b; Liarte et al., 2007). Moreover, most of these effects vary with the 16 

reproductive stage of the specimens (Cabas et al., 2011, 2013). On the other hand, the 17 

dietary intake of Tmx has been shown to be a suitable approach for studying its 18 

potentially endocrine disruptive effects (Benninghoff and Williams, 2008; Singh et al., 19 

2014).  20 

 In the present study, we investigate the effect of the dietary intake of Tmx alone 21 

or in combination with EE2 on some reproductive events in gilthead seabream and the 22 

possible reversibility of these effects after a recovery period of 25 days, during which 23 

fish were again fed with a commercial diet. This approach, as a way to unbalance the 24 

endocrine status of the fish, would improve our understanding of the complex network 25 

acting on the regulation of the reproductive function in this species, which has a great 26 

commercial interest in the Mediterranean area.  27 

 28 

Material and Methods 29 

Healthy specimens of gilthead seabream (Actinopterygii, Perciformes, Sparidae) were 30 

bred and kept at the Centro Oceanográfico de Murcia (Instituto Español de 31 

Oceanografía, Mazarrón, Murcia, Spain). 32 

 The experiment was performed using 80 male specimens of gilthead seabream, 33 

all in the spermatogenesis stage, with a mean body weight of 215 ± 6.5 g. Fish were 34 
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kept in 2 m3 tanks with a flow-through circuit, suitable aeration and filtration system 1 

and natural photoperiod. The water temperature ranged from 14.6 to 17.8°C. 2 

Environmental parameters, mortality and food intake were recorded daily. The EE2 3 

(98% purity; Sigma) and Tmx (Sigma) were incorporated in the commercial feed (44% 4 

protein, 22% lipids, Skretting, Spain) at doses of 0 (control), 5 μg EE2/g food, 100 μg 5 

Tmx/g food or 5 μg EE2 + 100 μg Tmx/g food, using the ethanol evaporation method 6 

(0.3 L ethanol/kg of food) as described elsewhere (Shved et al., 2007). The 7 

concentration of EE2 used in this study was previously assayed and shown to be the 8 

lowest concentrations producing an effect on some reproductive events of gilthead 9 

seabream (Cabas et al., 2011, 2013), while the concentration of Tmx used was twenty-10 

fold greater than the concentration of EE2 in order to guarantee a Tmx-ER interaction, 11 

considering that Tmx has a lower affinity than EE2 to bind ER (Denny et al., 2005). In 12 

any case, the Tmx concentration used in this study is similar to, or lower than, those 13 

tested in previous investigations (Chikae et al., 2004; Hulak et al., 2010).  14 

 The specimens were fed with EE2 and/or Tmx supplemented feed for 25 day, 15 

after which they were fed with the commercial food for a further 25 days (recovery 16 

period). The specimens were fed ad libitum three times a day and fasted for 24 h before 17 

sampling, which was carried out after 5 and 25 days of the EE2 and/or Tmx exposure 18 

and after the recovery period (n=6 fish/group and time). Specimens were anesthetized 19 

with 40 μL/L of clove oil and the urogenital pore was dried before collecting sperm as 20 

described below. The specimens were then weighed, decapitated, and the gonads 21 

removed and weighed. Fragments of liver and gonad were processed for gene analysis 22 

and light microscopy, as described below. Serum samples from trunk blood were 23 

obtained by centrifugation and immediately frozen and stored at -80°C until use.  24 

 The experiments comply with the Guidelines of the European Union Council 25 

(2010/63/UE) and the Bioethical Committee of the University of Murcia (Spain) and 26 

that of the “Instituto Español de Oceanografía” (Spain) for the use of laboratory 27 

animals. 28 

Analysis of gene expression 29 

Total RNA was extracted from liver and gonad fragments with TRIzol Reagent 30 

(Invitrogen, Barcelona, Spain) following the manufacturer’s instructions, and quantified 31 

with a spectrophotometer (NanoDrop, ND-1000). The RNA of five fish per group was 32 

independently treated with DNase I (amplification grade, 1 unit/μg RNA, Invitrogen, 33 

Barcelona, Spain) to remove genomic DNA traces that might interfere with the PCR 34 
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reactions, and the SuperScript III RNase H−Reverse Transcriptase (Invitrogen, 1 

Barcelona, Spain) was used to synthesize first strand cDNA with oligo-dT18 primer 2 

from 1 μg of total RNA, at 50°C for 50 min.  3 

 Real-time PCR was performed with an ABI PRISM 7500 (Applied Biosystems, 4 

Madrid, Spain) using SYBR Green PCR Core Reagents (Applied Biosystems, Madrid, 5 

Spain) and used to analyze the expression of the genes coding for (i) hepatic 6 

vitellogenin (vtg); (ii) steroidogenesis-related molecules: steroidogenic acute regulatory 7 

protein (star), cholesterol side chain cleavage cytochrome P450 (cyp11a1), steroid 11-8 

beta-hydroxylase (cyp11b1), 11β-hydroxysteroid deshydrogenase (hsd11b), aromatase 9 

(cyp19a1a), 5α reductase (srd5a) and 3β-hydroxysteroid deshydrogenase (hsd3b); (iii) 10 

testicular specific protein, double sex-and mab3-related transcription factor 1 (dmrt1); 11 

(iv) hormone receptors: follicle stimulating hormone (FSH) receptor (fshr), luteinizing 12 

hormone (LH) receptor (lhr) and estrogen receptor α (era), G protein-coupled estrogen 13 

receptor (gper); (v) immune-relevant molecules: interleukin 1β (il1b), tumor necrosis 14 

factor α (tnfa), transforming growth factor β1 (tgfb1), matrix metalloproteinase (mmp) 9 15 

and 13 (mmp13), major histocompatibility complex I α protein (mhc1a) and toll-like 16 

receptor 9 (tlr9). For each mRNA, gene expression was normalized to the ribosomal 17 

protein S18 gene (rsp18) content in each sample using the comparative Ct method 18 

(2−ΔΔCt) (where Ct is a cycle threshold). The gilthead seabream specific primers used are 19 

shown in Table 1. In all cases, each PCR was performed in triplicate. 20 

Analytical techniques 21 

Serum levels of testosterone (T), 11-ketotestosterone (11KT) and E2 were quantified by 22 

ELISA following the method described by Rodríguez et al. (2000) and previously used 23 

in gilthead seabream (Chaves-Pozo et al., 2008). Steroids were extracted from 20 μL of 24 

serum in 0.6 mL of methanol (Panreac). The methanol was then evaporated at 37°C and 25 

the steroids were resuspended in 400 μL of reaction buffer [0.1 M phosphate buffer with 26 

1 mM EDTA (Sigma), 0.4 M NaCl (Sigma), 1.5 mM NaN3 (Sigma) and 0.1% albumin 27 

from bovine serum (Sigma)]. By using 50 μL in each well, 2.5 μL of serum was used in 28 

each well for all the assays. The T, 11KT and E2 standards, mouse anti-rabbit IgG 29 

monoclonal antibody (mAb), and specific anti-steroid antibodies and enzymatic tracers 30 

(steroid acetylcholinesterase conjugates) were obtained from Cayman Chemical. 31 

Microtiter plates (MaxiSorp) were purchased from Nunc. A standard curve from 6.13 × 32 

10−4 to 2.5 ng/mL (0.03-125 pg/well) was established in all the assays. Standards and 33 

extracted serum samples were run in duplicate. The lower limit of detection for all the 34 
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assays was 12.21 pg/mL. The intra-assay coefficients of variation (calculated from 1 

duplicate samples) were 8.26% ± 1.33% for T, 8.80% ± 1.68% for 11KT and 3.98% ± 2 

0.57% for E2. Details on cross-reactivity for specific antibodies were provided by the 3 

supplier (2.2% of anti-T reacts with 11KT; 0.01% of anti-11KT reacts with T; 0.1% of 4 

anti-E2 reacts with T). 5 

Measurement of the sperm volume, concentration and motility 6 

Stripped sperm was obtained by gentle abdominal massage, the sperm being collected 7 

and measured in the genital pore with a syringe as the semen flowed out (urine-8 

contaminated samples were discarded). The total semen from each fish (n=6 fish/group 9 

and time) was used immediately to determine cell concentration and motility. To 10 

determine the sperm concentration, semen was diluted in 1% formol (Panreac) and 5% 11 

NaHCO3 (Sigma) in water at a ratio of 1:400 and the spermatozoa were counted using a 12 

Newbauer chamber. Motility was analyzed by activating 1 μL of sperm (diluted in 13 

Ringer 200 mOsm solution at the optimal dilution of 1:5 with 20 μL of seawater 14 

(Chereguini et al., 1997). The duration of sperm motility was determined by measuring 15 

the time elapsing between the initiation of sperm motility and the cessation of cell 16 

displacement using a light microscope at 400× magnification. The motility index was 17 

expressed on a relative scale of 0 to 5 (Sánchez-Rodríguez, 1975). 18 

Light microscopy and immunocytochemical staining 19 

The gonads were fixed in Bouin’s solution, embedded in Paraplast Plus (Sherwood 20 

Medical, Athy, Ireland), and sectioned at 5 µm. After dewaxing and rehydratation, some 21 

sections were stained with hematoxylin-eosin in order to determine the reproductive 22 

stage and the degree of development of each specimen. Some sections were used to: i) 23 

analyze cell proliferation with a commercial mammalian antibody specific to 24 

proliferating cell nuclear antigen (PCNA, Sigma) or ii) localize acidophilic granulocytes 25 

with a monoclonal antibody (mAb) specific to gilthead seabream acidophilic 26 

granulocytes (G7) (Sepulcre et al., 2002) and B lymphocytes with a commercial mAb 27 

specific to immunoglobulin M (IgM, Aquatic Diagnostic) (Sepulcre et al., 2011) 28 

following an indirect immunocytochemical method previously described (Chaves-Pozo 29 

et al., 2007). Rabbit polyclonal anti-PCNA cross-reacts with PCNA from all vertebrate 30 

species investigated to date, including fish (Kilemade et al., 2002). The antibodies were 31 

used at the optimal dilutions of 1:1000, 1:100 or 1:250, respectively. No 32 

immunostaining was observed when the first antiserum was omitted. 33 

Calculation and statistics 34 
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All data were analyzed by one-way ANOVA and a post hoc test (Tukey Honestly 1 

Significant Difference) to determine differences between groups (P ≤ 0.05). Normality 2 

of the data was previously assessed using a Shapiro–Wilk test and homogeneity of 3 

variance was also verified using the Levene test. The stripped sperm volume, and the 4 

sperm concentration and motility index data were analyzed by a Student t-test to 5 

determine differences between untreated control and the treated group for each time 6 

point. The critical value for statistical significance was taken as P ≤ 0.05. The asterisks 7 

mean: * P < 0.05; ** P < 0.01 and *** P < 0.001. All statistical analyses were carried 8 

out using the GraphPad Prism 5 program. 9 

 10 

Results 11 

Tmx up-regulates the hepatic expression of vitellogenin gene to a lesser extent than 12 

EE2 13 

The hepatic expression of vtg gene was up-regulated after the dietary intake of EE2 and 14 

Tmx. The Tmx-induced up-regulation was lower than that promoted by EE2 (Fig. 1A). 15 

After the recovering period, expression levels of vtg remained high, although the 16 

differences that existed between treatments became less pronounced (Fig. 1A). 17 

Interestingly, Tmx decreased the levels of vtg transcription triggered by EE2 when they 18 

were applied together at all time points analyzed (Fig. 1A). 19 

EE2 and Tmx differently affect sex steroid serum levels and the expression levels of 20 

some steroidogenic enzyme genes 21 

After 5 days of Tmx treatment, the serum levels of T (Fig. 1B), 11KT (Fig. 1C) and E2 22 

(Fig. 1D) where higher than those of control ones, while EE2 exposure had no effect in 23 

this respect (Fig. 1B-D). Interestingly, the administration of EE2+Tmx prevented the 24 

increases in serum steroid levels induced by Tmx (Fig. 1B-D). No differences in T, 25 

11KT or E2 serum levels were observed after 25 days of any treatment used (Fig. 1B-26 

D). By the end of the recovery period, T levels had fallen in the EE2 treated fish (Fig. 27 

1B) and E2 serum levels had increased in Tmx treated fish (Fig. 1D); however, these 28 

effects were annulled in the fish fed with EE2+Tmx (Fig. 1D).  29 

Although no effect was observed in the expression levels of star gene after 5 30 

days of EE2 or Tmx dietary intake, after 25 days, they were down-regulated in the 31 

gonad of EE2 treated fish and up-regulated in the gonad of Tmx treated fish (Fig. 2A). 32 

However, in EE2+Tmx treated fish the transcription levels of star decreased at day 5 33 
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and increased at day 25 of exposure (Fig. 2A). After the recovery period, they remained 1 

similar to those of control in all treatment groups (Fig. 2A).  2 

 Regarding the transcription of the genes coding for the steroidogenic enzymes 3 

studied (Fig. 2B-G), cyp11a1, hsd11b, srd5a and hsd3b expression levels were down-4 

regulated after 5 days of exposure to all the treatments (Fig. 2B,D,F,G). However, after 5 

25 days, EE2 down-regulated the expression of cyp11b1, hsd11b, srd5a and hsd3b genes 6 

(Fig. 2C,D,F,G), Tmx up-regulated the hsd11b, srd5a and hsd3b genes (Fig. 2D,F,G) 7 

and EE2+Tmx up-regulated the expression of cyp11a1, hsd11b, srd5a and hsd3b genes 8 

(Fig. 2B,D,F,G). Interestingly, the expression of cyp19a1a was down-regulated by Tmx 9 

and up-regulated by EE2 and EE2+Tmx (Fig. 2E). At the end of the recovery period, the 10 

expression levels of all these genes, with the exception of the cyp11a1, were up-11 

regulated in EE2 treated fish, (Fig. 2B), while any effect depended on the gene in 12 

question in Tmx and EE2+Tmx treated fish (Fig. 2B-G). Thus, the transcription of 13 

cyp11a1, cyp11b1 and cyp19a1a (Fig. 2B,C,E) was down-regulated, while the 14 

transcription of hsd11b and hsd3b (Fig. 2D,G) was up-regulated, in Tmx treated fish. 15 

Expression levels of cyp11a1 and hsd3b (Fig. 2B,G) were similar in Tmx and EE2+Tmx 16 

treated fish, while those of cyp11b1 and srd5a were similar in the control and EE2+Tmx 17 

treated fish (Fig. 2C,F). On the other hand, the expression of hsd11b and cyp19a1a in 18 

the EE2+Tmx treated fish was higher than in the control and lower than in EE2 treated 19 

fish (Fig. 2D,E).  20 

EE2 reduces seminal fluid volume and sperm concentration, while Tmx increases 21 

sperm concentration and motility  22 

After 5 days of treatment, EE2 decreased the volume of seminal fluid to such an extent 23 

that it was not possible to measure sperm concentration or motility (Table 2). Tmx did 24 

not affect the volume of seminal fluid, or the sperm concentration or motility and 25 

EE2+Tmx did not affect seminal fluid volume or sperm motility but decreased the sperm 26 

concentration (Table 2). After 25 days of EE2 or Tmx treatments, seminal fluid volume 27 

was unaffected but respective decrease and increase in sperm concentration were 28 

evident. However, fish treated with EE2+Tmx showed a decreased seminal fluid volume 29 

and sperm concentration. Sperm motility was increased only in Tmx treated fish (Table 30 

2). Moreover, no detectable seminal fluid was observed after the recovery period in EE2 31 

or EE2+Tmx treated fish, while in Tmx treated fish both the seminal fluid volume and 32 

sperm concentration were higher than in control fish (Table 2).  33 

EE2 and Tmx affect spermatogenesis in a different way 34 
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The control fish remained in spermatogenesis throughout the experimental period. The 1 

testicular area of the gonad was formed by tubules with a germinal epithelium 2 

consisting of spermatogonia stem cells and cysts of germ cells in all developmental 3 

stages (spermatogonia, spermatocytes and spermatids); a varying amount of free 4 

spermatozoa was also observed in the lumen of the tubules (Fig. 3A). Interestingly, 5 

scattered degenerative cysts with very condensed genetic material were observed (Fig. 6 

3A).  7 

 Although the general morphology of the testicular area did not change after 5 8 

days of EE2 (Fig. 3B) or EE2+Tmx treatment, more degenerative cysts were evident 9 

than in control fish. However, after 25 days, the germinal epithelium was made up of 10 

spermatogonia stem cells and some cysts of primary spermatogonia and no meiotic 11 

germ cells were observed (Fig. 3C). After the recovery period, the germinal epithelium 12 

of these two groups of fish still consisted of spermatogonia and Sertoli cells and 13 

abundant interstitial tissue (Fig. 3D,E). However, while most of the tubules had a 14 

collapsed lumen in EE2 treated fish (Fig. 3D), some tubules with a small amount of free 15 

spermatozoa were observed in the EE2+Tmx treated fish (Fig. 3E). Testis morphology 16 

in fish fed with Tmx did not show any noticeable change compared with that of control 17 

fish during the treatment period or after resuming the commercial diet (data not shown). 18 

Cysts of proliferating spermatogonia and spermatocytes were observed in 19 

control fish (Fig. 4A) and in Tmx exposed fish (Fig. 4B) at all the time points analyzed. 20 

However, in fish treated with EE2 (Fig. 4C) and EE2+Tmx, only some Sertoli cells were 21 

immunolabelled with anti-PCNA after 25 days of treatment. Interestingly, after the 22 

recovery period, while a few spermatogonia and Sertoli cells were seen to divide  in the 23 

testis of EE2 treated fish (Fig. 4D), numerous cysts of proliferating spermatogonia and 24 

some proliferative Sertoli cells were observed in the testis of EE2+Tmx treated fish (Fig. 25 

4E).  26 

 Five days of EE2, Tmx or EE2+Tmx treatment promoted a decrease in dmrt1 27 

gene expression, the EE2 treated group showing the strongest effect (Fig. 4F). However, 28 

after 25 days of treatment, the expression level of dmrt1 gene remained down-regulated 29 

in EE2-treated fish, while it was up-regulated in Tmx- and EE2+Tmx-treated fish (Fig. 30 

4F). After the recovery period, the expression levels of dmrt1 gene were down-regulated 31 

in the fish that had been exposed to EE2 or EE2+Tmx (Fig. 4F).  32 

The expression levels of fshr (Fig. 5A), lhr (Fig. 5B) and gper (Fig. 5D) genes 33 

decreased after 5 days of Tmx or EE2+Tmx dietary intake, while the expression of era 34 
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was not affected by any treatment (Fig. 5C). After 25 days of treatment, the expression 1 

levels of lhr were similar to control ones (Fig. 5B), while those of fshr were up-2 

regulated by all the treatments (Fig. 5A).The expression levels of era (Fig. 5C) and gper 3 

(Fig. 5D) were increased by Tmx and EE2+Tmx, the up-regulation seen in gper gene 4 

expression being more pronounced in the EE2+Tmx-treated than in Tmx-treated fish 5 

(Fig. 5A-D). However, after the recovery period, the expression levels of fshr were up-6 

regulated in the EE2-treated group (Fig. 5A), and those of lhr were up-regulated in the 7 

EE2-treated group and down-regulated in the EE2+Tmx treated group (Fig. 5B), while 8 

expression levels of era and gper had returned to control levels.  9 

EE2 and Tmx differently affect the immune response in the gonad 10 

Acidophilic granulocytes and B lymphocytes (IgM+ cells) were revealed by 11 

immunolabelling with G7 (Fig. 6) and anti-IgM (Fig. 7), respectively. In control fish, 12 

scattered or, occasionally, small groups of acidophilic granulocytes were located in the 13 

interstitial tissue of the testicular area (Fig. 6A) or in the connective tissue that limited 14 

the ovarian and testicular areas of the gonad. Although the localization of these cells did 15 

not change at any time during the experimental period in any treatment, they were more 16 

numerous after 25 days of EE2, Tmx and EE2+Tmx dietary intake (Fig. 6B,C). 17 

Interestingly, after the recovery period, this increase was not observed in fish fed with 18 

Tmx (Fig. 6E) but was evident in fish that had been fed with EE2+Tmx and, especially, 19 

EE2 (Fig. 6D,F). IgM+ cell (Fig. 7) recruitment was triggered only by EE2 after 5 days 20 

of exposure (Fig. 7B). However, after the recovery period, an increase in the amount of 21 

IgM+ cells was observed in the fish that had been fed with diets containing EE2 or 22 

EE2+Tmx (Fig. 7C,D).   23 

As regards the pro-inflammatory cytokine genes, il1b and tnfa, the former was 24 

up-regulated by EE2 and Tmx after 25 days of exposure (Fig. 8A), while the tnfa was 25 

down-regulated by Tmx after 5 days (Fig. 8B). Both cytokine gene expression levels 26 

were down-regulated after 5 days and up-regulated after 25 days of EE2+Tmx dietary 27 

intake. After the recovery period, the expression levels of tnfa had only increased in the 28 

EE2 treated fish (Fig. 8B). Regarding the expression of the anti-inflammatory cytokine 29 

gene tgfb1, its transcription was inhibited after 5 days of exposure with all the 30 

treatments (Fig. 8C). However, the tgfb1 expression was up-regulated after 25 days of 31 

Tmx and EE2+Tmx dietary intake and after the recovery period in all treated groups.  32 

 When the expression pattern of two metalloproteinase genes, mmp 9 (Fig. 8D) 33 

and mmp13 (Fig. 8E), was analyzed, they were seen to have an almost inverted pattern 34 



12 
 

of expression. Thus, after 5 and 25 days of EE2 exposure, the transcription of mmp9 1 

gene had increased, whilst the transcription of mmp13 gene had decreased. Tmx dietary 2 

intake for 5 days triggered a decrease and an increase of the transcription levels of 3 

mmp9 and mmp13 genes, respectively, while after 25 days of treatment, only the 4 

transcription levels of mmp9 gene increased. Interestingly, the expression of mmp13 5 

was down-regulated after 5 days of EE2+Tmx dietary intake, while the expression of 6 

both mmp9 and mmp13 was up-regulated after 25 days of this treatment. On the other 7 

hand, after the recovery period, the expression levels of mmp9 were higher in all the 8 

treated groups compared with the control, while mmp13 transcription was only 9 

increased in the fish treated with EE2 or EE2+Tmx. 10 

Regarding the expression of some antigen recognition genes, the expression 11 

levels of mhc1a (Fig. 8F) or tlr9 (Fig. 8G) genes decreased after 5 days of EE2, Tmx or 12 

EE2+Tmx treatments and after 25 days of EE2 dietary intake. Interestingly, the mhc1a 13 

transcription levels increased after 25 days of Tmx or EE2+Tmx dietary intake. After 14 

the recovery period, both genes were up-regulated in the EE2 treated group, while only 15 

the mhc1a gene was up-regulated in the Tmx and EE2+Tmx treated groups.  16 

 17 

Discussion 18 

The expression level of the hepatic vtg has been widely used as a marker of estrogenic 19 

endocrine disruption in fish (Hiramatsu el al., 2005; Bugel et al., 2013; Genovese et al., 20 

2014; Hultman et al., 2015; Saunders et al., 2015). The present study shows that both 21 

EE2, as described previously (Cabas et al., 2011, 2013), and Tmx act as estrogenic 22 

endocrine disruptors in gilthead seabream males, since they up-regulate the expression 23 

of the hepatic vtg gene. Tmx also increased the vtg gene expression in some fish species 24 

(Sun et al., 2007; Benninghoff and Williams, 2008) and the VTG concentration in fish 25 

homogenates of zebrafish males (Baumann et al., 2014), although it did not have any 26 

effect in other fish species (Leaños-Castañeda et al., 2002; Maradonna et al., 2009). 27 

However, when Tmx was applied with EE2, a reduction in the EE2-induced vtg gene 28 

expression was observed, as reported in other fish species upon exposure to Tmx and 29 

other estrogenic compounds (Leaños-Castañeda et al., 2002; Benninghoff and Williams, 30 

2008; Maradonna et al., 2009; Sun et al., 2011b). Our results indicate that Tmx activates 31 

some ERs at the same time as it reduces their availability for binding to EE2, which is 32 

consistent with the formation of the relatively stable Tmx-ER complex described by 33 

Jordan et al. (1977).  34 
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 Although exposure to EE2 does not affect plasmatic levels of T and E2 in some 1 

fish (Swapna and Senthilkimaran, 2009; Colli-Dula et al., 2014), in gilthead seabream 2 

adult males serum levels of the main fish sex steroid vary according to the reproductive 3 

stage of the specimens and the EE2 concentrations and time point analyzed (Cabas et al., 4 

2011, 2013). In this sense, no effect of EE2 was observed in our study during treatment, 5 

although it promoted an increase in T levels after the recovery period. As regards Tmx, 6 

an increase in androgen plasma levels was observed in our study as also occurs in carp 7 

males (Bottero et al., 2005), while in addition to this effect, we observed an increase in 8 

E2 serum levels upon short term treatment. However, longer treatment led to the 9 

restoration of control levels of the sex steroid, which indicates that fish adjusted to 10 

sustained exposure. Interestingly, combined exposure to EE2 and Tmx counteract their 11 

individual effects on serum androgen levels, which suggests an antagonistic action of 12 

EE2 and Tmx beyond their direct competition to bind some ERs.  13 

 Despite the unaffected steroid plasma levels seen in EE2-treated fish, our data on 14 

steroidogenic enzyme gene expression levels reflect an alteration in the steroidogenesis 15 

capability of the specimens, as occurs in other fish species upon EE2 exposure (Sridevi 16 

et al., 2013; Colli-Dula et al., 2014). Thus, the gene expression of most of the 17 

steroidogenic enzymes analyzed in this study fell after short exposure to EE2 and Tmx, 18 

whether separately or in combination. However, after longer treatment, the effects of 19 

Tmx became the opposite of those promoted by EE2 but were reinforced when both 20 

compounds were applied together. Only the cyp19a1a gene showed a different 21 

expression pattern, being down-regulated by Tmx, as reported in other fish (Kitano et 22 

al., 2007) and up-regulated by EE2+Tmx. In medaka males, the transcription of star, 23 

cyp11a and cyp19a genes was up-regulated by EE2+Tmx, but not by EE2 exposure, 24 

which led to the suggestion of a compensatory feedback in response to the anti-25 

estrogenic property of Tmx (Sun et al., 2011b). Our results, however, underline the 26 

complexity of the action mechanisms of Tmx, which may, as occurs in mammals, bind 27 

to more than one ER (Fitts et al., 2011) and recruit tissue-specific co-regulators that 28 

would determine different downstream effects, depending on the cellular context 29 

(McDonnell and Wardell, 2010).  30 

The depletion of dmrt1 gene expression in mammals leads to the loss of mitotic 31 

germ cells, which precociously enter meiosis (Don et al., 2011). In addition, we found 32 

that EE2 decreases the expression levels of dmrt1 gene, concomitant with a depletion of 33 

meiotic cells in testis (Cabas et al., 2011, 2013). Thus, the consumption of meiotic cells 34 
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observed in the testis of fish exposed to EE2, as reported also in catfish upon EE2 1 

exposure (Swapna and Senthilkimaran, 2009), or EE2+Tmx for 25 days was probably 2 

triggered by the initial decrease in the expression levels of dmrt1. In addition, E2 caused 3 

the mitotic division of germ cells in testicular fragments of Japanese eel in vitro (Miura 4 

et al., 1999). Hence, initial decreases in the expression levels of dmrt1 in fish exposed to 5 

Tmx did not lead to the subsequent exhaustion of meiotic cells, probably due to the high 6 

serum levels of E2 occurring in these fish. Accordingly, the renewal of mitotic cells after 7 

the recovery period in gilthead seabream treated with EE2+Tmx could have been 8 

triggered by the increase in the expression levels of dmrt1, aided by the high expression 9 

levels of era and gper, which would imply a certain estrogenic effect even though E2 in 10 

serum is at control levels, by the end of treatment period. All these data support that E2 11 

has a role in spermatogonia stem cell renewal in gilthead seabream as also suggested in 12 

Japanese eel (Miura et al., 1999). Moreover, if 11KT is needed for meiosis to begin, as 13 

established for Japanese eel (Miura et al., 1999), the high 11KT serum levels in Tmx-14 

treated fish could have prevented the accumulation of degenerative cysts in the rest of 15 

the treated groups following short treatment, which would be explained by impaired 16 

spermatogonia stem cell divisions promoted by the decrease in expression levels of 17 

dmrt1 and the initiation of meiosis. Moreover, our data demonstrate that Tmx partially 18 

neutralizes the effects of EE2 on spermatogenesis, accelerating the recovery of the 19 

spermatogenic process upon the cessation of exposure, although it was not able to 20 

prevent the increase in interstitial tissue caused by EE2 treatment reported in fish (Elias 21 

et al., 2007; Kaptaner and Ünal, 2010) and also observed in our study.  22 

Although no differences between control and Tmx-treated fish were observed in 23 

testis morphology after 25 days of treatment, the spermatogenic process was somehow 24 

affected by Tmx, as shown by the increased sperm concentration and higher motility 25 

index. In addition, in Tmx-treated fish the expression levels of cyp19a1a gene 26 

decreased, while those of dmrt1 gene increased, which have been described as being 27 

necessary to induce testicular differentiation and for the maintenance of testicular 28 

function in fish, respectively (Marchand et al., 2000; Liarte et al., 2007; Guiguen et al., 29 

2010). The same was recorded during female-to-male sex reversal caused by Tmx in the 30 

Southern catfish (Liu et al., 2010). FSH regulates Sertoli cell proliferation in sea bass 31 

(Mazón et al., 2014) and the expression of fshr gene has been related with this process 32 

and with early spermatogenesis (Rahman et al., 2003; Rocha et al., 2009). In gilthead 33 

seabream, the sharp increase in fshr expression levels after 25 days of EE2+Tmx 34 

treatment could have helped the restoration of mitotic activity in the testis of these fish 35 
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after the recovery period. Thus, our data point to the existence of a testicular network 1 

that involves the dmrt1, era, gper and fshr genes, whose rates of expression could 2 

determine the rates of mitotic proliferation and entrance of germ cells into 3 

spermatogenesis, aided by relevant plasma levels of E2 and 11KT.  4 

EE2 affects the recruitment of leukocytes and the regulation of the cytokine 5 

network in fish gonads (Cabas et al., 2011, 2013; Seemann et al., 2013), up-regulating 6 

the expression of genes coding for the molecules involved in gilthead seabream (Cabas 7 

et al., 2011, 2013). In the present study, the expression patterns of pro- and anti-8 

inflammatory cytokines (il1b, tnfα and tgfb) were stimulated or decreased according to 9 

the time of exposure, as occurred in fish treated with Tmx. However, in all cases, 10 

treatment with EE2+Tmx enhanced the effect of Tmx alone, indicating a non-11 

competitive but synergic action of both compounds on the expression of these genes. As 12 

regards the expression patterns of mmp genes, those of mmp9 agree with the recruitment 13 

of acidophilic granulocytes in the testicular tissue of fish treated with EE2, Tmx and 14 

EE2+Tmx. On the other hand, it has been suggested that EE2 stimulates the ability of the 15 

gonad to recognize and respond to pathogens (Cabas et al., 2011). In the present study, 16 

however, the expression of tlr9 and mch1a genes was up-regulated by EE2 only when 17 

applied together with Tmx for 25 days or after the recovery period. These data suggest 18 

that the effect of endocrine disrupter on this process might not only depend on the 19 

compound itself but, on the physiological state of the individuals.  20 

The long-term effects of Tmx, supplied alone or with EE2, on most parameters 21 

studied were contrary to those caused by short treatment. Changes in the effects of Tmx 22 

over time have also been described during tumour treatment (McDonnell and Wardell, 23 

2010). Interaction with different ERs at different times could be involved in these 24 

striking responses, as various er genes are expressed in fish, including those coding for 25 

nuclear ERα, ERβ-I and ERβ-II (Nelson and Habibi, 2013) and the membrane-26 

associated GPER (Liu et al., 2009; Pang and Thomas, 2010). However, the similar 27 

response of genes coding for ERα and GPER to the treatments could indicate a 28 

homeostatic response to sustained exposure, resulting in an up-regulation of the 29 

expression of the genes involved. Also, a non-receptor mediatory mechanism, such as 30 

an inhibitory effect of the chemicals on the activity of steroidogenic enzymes, as 31 

suggested by Colli-Dula et al. (2014), could contribute to the imbalance in the 32 

reproductive process.  33 
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In the present study, the effects promoted by Tmx and/or EE2 were neutralized 1 

after the recovery period in the case of era and gper genes. However, neither the 2 

expression levels of vtg gene, the genes coding for the steroidogenic enzymes analyzed, 3 

nor serum steroid levels were restored to control values after 25 days of recovery. 4 

Studies on the ability to recover from EE2 exposure, mostly carried out on zebrafish, 5 

have focused on the sexual differentiation and reproductive capacity (Hill and Janz, 6 

2003; Nash et al., 2004; Schafers et al., 2007; Baumann et al., 2014). Developing catfish 7 

maintained high expression levels of genes coding for steroidogenic enzymes up to 300 8 

days after a 50-day exposure to EE2 (Sridevi et al., 2013). Further studies are needed to 9 

clarify the action mechanisms of these disruptive compounds and the ability of fish, 10 

particularly mature fish, to recover from their effects. 11 

In conclusion, our data indicate that Tmx acts as an endocrine disruptor in 12 

gilthead seabream males. It has estrogenic effects, such as the up-regulation of 13 

expression levels of hepatic vtg and gonadal era and gper genes and the increase of E2 14 

serum levels. In addition, Tmx has some effects that do not fit with an estrogenic action, 15 

such as an increase in serum levels of androgens, and the up- and down- regulation of 16 

expression levels of dmrt1 and cyp19a1a genes, respectively. However, when combined 17 

with the estrogenic compound EE2, Tmx may counteract (vtg, dmrt1) or enhance (fsh, 18 

era, gper) its effects on gene expression levels. It was also found that the disruptive 19 

effect of EE2 and/or Tmx on the reproductive process is not reversible after a 25 day 20 

recovery period, since expression levels of hepatic vtg and other parameters studied 21 

were still disturbed after this time. 22 
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 28 

 29 

Figure legends 30 

Figure 1: EE2, Tmx and EE2+Tmx increase the transcription levels of vtg gene and 31 

differently affect the serum levels of main steroid hormones in gilthead seabream males. 32 

The transcription levels of vtg in the liver (A) and the serum levels of T (B), 11KT (C) 33 

and E2 (D) of gilthead seabream males treated with 0 (control), 5 μg EE2/g food, 100 µg 34 

Tmx/g food or 5 µg EE2+100 µg Tmx/g food for 5 and 25 days and after 25 days of 35 
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reverting the commercial diet (d25 recovery). The asterisks denote statistically 1 

significant differences between the groups according to Tukey’s test. * P < 0.05, ** P < 2 

0.01 and *** P < 0.001.  3 

Figure 2: EE2, Tmx and EE2+Tmx modulate the expression of genes coding for 4 

steroidogenic-relevant molecules in the gonad of gilthead seabream males. The 5 

specimens were treated with 0 (control), 5 μg EE2/g food, 100 µg Tmx/g food or 5 µg 6 

EE2+100 µg Tmx /g food for 5 and 25 days, and after 25 days of reverting to the 7 

commercial diet (d25 recovery). The mRNA levels of star (A), cyp11a1 (B), cyp11b1 8 

(C), hsd11b (D), cyp19a1a (E), srd5a (F), and hsd3b (G) were determined in the gonad 9 

by real-time reverse transcription polymerase chain reaction (RT-PCR). Data represent 10 

means ± S.E.M. of the gene expression from 5 independent fish/group and time. The 11 

asterisks denote statistically significant differences between the groups according to 12 

Tukey’s test. * P < 0.05, ** P < 0.01 and *** P < 0.001.  13 

Figure 3: Effects of EE2, Tmx and EE2+Tmx dietary intake on the testicular 14 

morphology of gilthead seabream males. Paraplast embedded sections (A-E) of the 15 

gonad of gilthead seabream males treated with 0 (control, C) (A) or 5 μg EE2/g food (B, 16 

D), or 5 µg EE2 + 100 µg Tmx /g food (C, E) for 5 (A, B) and 25 (C) days and after 25 17 

days of reverting to the commercial diet (rp, D, E) stained with hematoxylin-eosin (HE). 18 

White arrowheads: primary spermatogonia; white arrows: degenerative cysts; asterisk: 19 

spermatogonia cysts; Sc: spermatocytes, Sz: spermatozoa. Scale bar = 35 µm.  20 

Figure 4: Effect of EE2, Tmx and EE2+Tmx on cell testicular proliferation and on the 21 

dmrt1 gene expression. Paraplast embedded sections immunostained with anti-22 

proliferating cell nuclear antigen (anti-PCNA) serum (A-E) and the transcription levels 23 

of dmrt1 gene (F) of the gonad of gilthead seabream males treated with 0 (control, C) 24 

(A), 5 μg EE2/g food (C, D), 100 µg Tmx/g food (B) or 5 µg EE2+100 µg Tmx /g food 25 

(E) for 5 (A, B) and 25 (C) days and after 25 days of reverting to commercial diet (rp, 26 

D, E). (A-E) white arrowheads: spermatogonia stem cells; white arrows: proliferative 27 

primary spermatogonia; asterisks: cyst of proliferative spermatogonia: black arrows: 28 

proliferative Sertoli cells. Scale bar = 35 µm. The mRNA levels of dmrt1 (F) were 29 

determined in the gonad by real-time reverse transcription polymerase chain reaction 30 

(RT-PCR). Data represent means ± S.E.M. of the gene expression from 5 independent 31 

fish/group and time. The asterisks denote statistically significant differences between 32 

the groups according to Tukey’s test. * P < 0.05, ** P < 0.01 and *** P < 0.001. 33 

Figure 5: EE2, Tmx and EE2+Tmx modulate the expression of genes coding for 34 

hormone receptors in the gonad of gilthead seabream males. The specimens were 35 
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treated with 0 (control), 5 μg EE2/g food, 100 µg Tmx/g food or 5 µg EE2+100 µg 1 

Tmx/g food for 5 and 25 days and after 25 days of reverting to the commercial diet (d25 2 

recovery). The mRNA levels of fshr (A), lhr (B), era (C) and gper (D) were determined 3 

in the gonad by real-time reverse transcription polymerase chain reaction (RT-PCR). 4 

Data represent means ± S.E.M. of the gene expression from 5 independent fish/group 5 

and time. The asterisks denote statistically significant differences between the groups 6 

according to Tukey’s test. ND, not detected; * P < 0.05, ** P < 0.01 and *** P < 0.001.  7 

Figure 6: EE2, Tmx and EE2+Tmx recruited acidophilic granulocytes into the testis of 8 

gilthead seabream. Paraplast embedded sections of the testis of gilthead seabream 9 

males treated with 0 (control, C) (A), 5 μg EE2/g food (D), 100 µg Tmx/g food (B, E) or 10 

5 µg EE2+100 µg Tmx/g food (C, F) for 5 (A) and 25 (B, C) days and after 25 days of 11 

reverting to the commercial diet (rp, D-F) immunostained with the serum against 12 

gilthead seabream acidophilic granulocytes (G7, black arrows). Scale bar = 35 µm. 13 

Figure 7: EE2, and EE2+Tmx, but not Tmx, recruited B-lymphocytes into the testis of 14 

gilthead seabream. Paraplast embedded sections of the testis of gilthead seabream 15 

males treated with 0 (control, C) (A), 5 μg EE2/g food (B, C) or 5 µg EE2 + 100 µg Tmx 16 

/g food (D) for 5 days (A, B) and after 25 days of reverting to the commercial diet (rp, 17 

C, D) immunostained with the serum against gilthead seabream IgM. Black arrows: B-18 

lymphocytes stained with the anti-gilthead seabream IgM serum. Scale bar = 35 µm. 19 

Figure 8: EE2, Tmx and EE2+Tmx modulate the expression of genes coding for some 20 

immune-relevant molecules in the gonad of gilthead seabream males. The specimens 21 

were treated with 0 (control), 5 μg EE2/g food, 100 µg Tmx/g food or 5 µg EE2+100 µg 22 

Tmx/g food for 5 and 25 days and after 25 days of reverting to the commercial diet (d25 23 

recovery). The mRNA levels of il1b (A), tnfa (B), tgfb1 (C), mmp9 (D), mmp13 (E), 24 

mhc1a (F), and tlr9 (G) were determined in the gonad by real-time reverse transcription 25 

polymerase chain reaction (RT-PCR). Data represent means ± S.E.M. of the gene 26 

expression from 5 independent fish/group and time. The asterisks denote statistically 27 

significant differences between the groups according to Tukey’s test. * P < 0.05, ** P < 28 

0.01 and *** P < 0.001.  29 
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Table 1: Gene accession numbers and primer sequences used for gene expression 1 
analysis by real time PCR.  2 
 3 

Gene Accession number Name Sequence (5`-3’) 
F1 CTGCTGAAGAGGGACCAGAC 

vtg AF210428 
R1 TTGCCTGCAGGATGATGATA 
F1 ACATCGGGAAGGTGTTCAAG 

star AM905934 
R1 TCTCTGCAGACACCTCATGG 
F CGCTGCTGTGGACATTGTAT 

cyp11a1 FM159974.1 
R CATCATGTCTCCCTGGCTTT 
F GCTATCTTTGGACCCCATCA 

cyp11b1 FP332145 
R CTTGACTGTGCCTTTCAGCA 
F AGACATGGGCAACGAGTCAG 

hsd11b AM973598 
R TCCACATCTCCCTCCCACAT 
F2 CAATGGAGAGGAAACCCTCA 

cyp19a1a AF399824 
R2 ATGCAGCTGAGTCCCTGTCT 
F TGCACTTTCGTGACTCTGCT 

srd5a AM958800 
R TTTCGCACAAGACGTCCAGA 
F GGAGGACAAACTGGTGGAGG 

hsd3b HS985587 
R ACATTCTCCGTTCCGGTGAC 
F GATGGACAATCCCTGACACC 

dmrt1 AM493678 
R GGGTAGCGTGAAGGTTGGTA 
F2 TCCCACTACGGATCCTCATC 

fshr AY587262 
R2 AACGGGAACAGTCAGTTTG 
F2 ATACACGACCACGCATTCAA 

lhr AY587261 
R2 CGCCGGTAACTTCTTGAGAG 
F GCTTGCCGTCTTAGGAAGTG 

era AF136979 
R TGCTGCTGATGTGTTTCCTC 
F1 GGCTGCCAGAGAATGTCTTC 

gper HG004163 
R1 GTGGCCTGTGAGTGGGTAGT 
F2 GGGCTGAACAACAGCACTCTC 

il1b AJ277166 
R3 TTAACACTCTCCACCCTCCA 
FE1 TCGTTCAGAGTCTCCTGCAG 

tnfa AJ413189 
RE3 CATGGACTCTGAGTAGCGCGA 

F AGAGACGGGCAGTAAAGAA 
tgfb1 AF424703 

R GCCTGAGGAGACTCTGTTGG 
F1 GGGGTACCCTCTGTCGATTT 

mmp9 AM905938 
R1 CCTCCCCAGCAATATTCAGA 
F CGGTGATTCCTACCCATTTG 

mmp13 AM905935 
R TGAGCGGAAAGTGAAGGTCT 
F CCAGAGCTTCCCTCAGTGTC 

mhc1a AY292461 
R CATCTGGAAGGTTCCATCGT 
F2 GGAGGAGAGGGACTGGAT 

tlr9 AY751798 
R2 GATCACACCGTCACTGTCTC 
F AGGGTGTTGGCAGACGTTAC 

rps18 AM490061 
R CTTCTGCCTGTTGAGGAACC 

 4 
 5 
 6 
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Table 2. Effects of the dietary intake of 5 µg 17α-ethynylestradiol (EE2)/g food, 100 µg tamoxifen (Tmx)/g food or 5 µg EE2 +100 µg Tmx/g food during 5 and 25 days 
(Treatment) and after resuming normal diet (Recovery) during 25 days on volume of seminal fluid (mL), sperm concentration (cell/mL) and motility index. Data represent 
means ± SEM of six independent fish per group. Asterisks denote statistically significant differences between treatment and control groups according to a Student t test (*P ≤ 
0.1; **P≤0.05). ND: not detected 
 
 
 
 

 

Volume of seminal fluid (mL) Sperm concentration (cell/mL) Sperm motility index 
 

Treatment Recovery Treatment Recovery Treatment Recovery 
Treatment 5 days 25 days 25 days 5 days 25 days 25 days 5 days 25 days 25 days 

Control 0.83±0.14 1.03±0.31 0.9±0.24 16.37±3.0 (9.32±0.60)x103 (7.66±0.44) x103 0.83±0.31 0.33±0.25 2.08±0.27 
EE2 0.02±0.02** 0.68±0.45 ND ND (4.54±2.96) x103** ND ND 0.67±.033 ND 
Tmx 0.73±0.18 2.67±1.19 2.65±0.88* 9.17±2.29 (13.33±0.75) x103** (9.81±0.60) x103** 1.38±0.33 1.42±0.20* 1.58±0.30 

EE2+Tmx 0.73±0.23 0.08±0.07** ND 8.5±1.95** (3.31±2.88) x103** ND 1.0±0.37 0.58±0.37 ND 
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Highlights 

Tmx disrupts the gilthead seabream reproductive process including the gonad immune 

response 

Tmx alters the expression profile of hepatic vitellogenin gene in males of a protandrous 

fish 

Tmx can counteract or enhance the effects of EE2 on reproductive several parameters  

The disruptive effects of Tmx and/or EE2 on reproduction are not reversed after a 25-

day recovery period 
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