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Abstract

The differential geometry of 3-dimensional Bianchi, Cartan and Vranceanu (BCV') spaces
is well known. We introduce the extended Bianchi, Cartan and Vranceanu (EBCV') spaces
as a natural seven dimensional generalization of BC'V spaces and study some of their main
geometric properties, such as the Levi-Civita connection, Ricci curvatures, Killing fields and
geodesics.
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1 The Bianchi-Cartan-Vranceanu (BCV) spaces (see [2,

5])

It was Cartan ([6]) who obtained the families of today known as BC'V-spaces by classifying three-
dimensional Riemannian manifolds with four-dimensional isometry group. They also appeared in
the work of L. Bianchi ([3, 4]), and G. Vranceanu ([18]). These kind of spaces have been extensively
studied and classified (see for instance [14, 17]). In theoretical cosmology they are known as
Bianchi-Kantowski-Saks spaces, which are used to construct some homogeneous spacetimes ([10]).

For real numbers m and [, consider the set

BCV(m,l) = {(x,y,2) € R* : 1 +m(z* +°) >0}

(*) Corresponding author A. Ferrdndez.



equipped with the metric

e dx? + dy? N (dz L ady - ydx)2

mtT 2 A
where m, [ are real numbers and A = 1 + m(z? + y?) > 0.

Observe that this metric is obtained as a conformal deformation of the planar Euclidean metric
by adding the imaginary part of z dz, for a complex number z.

The complete classification of BC'V spaces is as follows:

(i) If m =1 = 0, then BCV (m,[) = R3,

(ii) If m = £, then BCV (m, 1) = (S*(m) — {oo});

(iii) If m > 0 and [ = 0, then BC'V (m,1) = (S*(4m) — {o0}) x R;
(iv) If m < 0 and [ = 0, then BCV (m, 1) = (H?*(4m) — {o0}) x R;
(v) If m > 0 and [ # 0, then BC'V (m,[) = SU(2) — {oo};

(vi) If m < 0 and { # 0, then BCV (m, 1) = SL(2, R);

(vii) If m = 0 and [ # 0, then BC'V (m, ) = Nils.

The following vector fields form an orthonormal frame of BC'V (m,():

l l
E, =)0, — 52182, Ey = Aay"’ixam E3 =0..

Let D be the distribution generated by {E, E»}, then the manifold (BCV (m,1),D,ds, ;) is
an example of sub-Riemannian geometry (see [5, 15]) and the horizontal distribution is a 2-step
breaking-generating distribution everywhere.

2 Extended Bianchi-Cartan-Vranceanu spaces

2.1 Set up

Observe that letting z = = + iy, we see that Im(zdz) = ydxr — zdy, which reminds us the map
C x C — R x C given by (21, 22) — (|21]*> — |22/, 2(2122)), that easily leads to the classical Hopf
fibration S' — S§* — S?, where coordinates in S? are given by (|z1]? — |22/%, 2Re(21 %), 2Im (2, 22)).

In the same line, using quaternions H instead of complex numbers, we get the fibration S? —
ST — S*. Quaternions are usually presented with the imaginary units 4,7,k in the form ¢ =
xo + 11 + T2j + w3k, X0, T1, T2, v3 € R with 2 = j2 = k? = ijk = —1. They can also be defined
equivalently, using the complex numbers ¢; = xg+ x17 and ¢y = x5 + x3i, in the form ¢ = ¢; + ¢o7.
Then for a point (¢ = a + B8j,q2 = v+ dj) € ST, we get the following coordinate expressions
(|Q1|2 - |QQ|27 2Re(6¢7 + 55)7 21m<d7 + ﬁé)v QRG(Q(S - ﬁ’}/% QIm(O‘(S - ﬁ’y))

For any ¢ = w+ zi+ yj + zk € H we find that qdg = wdw + xdx + ydy + zdz + (xdw — wdzx +
zdy — ydz)i + (ydw — wdy + xdz — zdx)j + (zdw — wdz + ydx — xdy)k. The quaternionic contact



group H x ImH, with coordinates (w, x,y, 2,7, s,t), can be equipped with the metric

1 2
ds? — (dw2 + d2? + dy? + d;ﬂ) + (dr + §(xdw —wdzx + zdy — ydz))
2

1 2 1
+ <ds + §(ydw —wdy + xdz — zdw)) + (dt + é(zdw —wdz + ydx — xdy))

Then, by extending this metric, and following [9], it seems natural to find a 7-dimensional
generalization of the 3-dimensional BC'V spaces endowed with the two-parameter family of metrics

dw? + dz? + dy* + dz? | wdz — xdw + ydz — zdy >
2
ds;,, = 702 + (dr+ 3 % )
l wdy — ydw + zdr — xdz 2 lwdz — zdw + xdy — ydx 2
ds + — dt + =
+ < s+ 3 - > + ( +5 7 ,

where m, [ are real numbers and K = 1 + m(w? + 22 + y* + 2%) > 0.
Then (EBCV,ds,, ;) will be called extended BCV spaces (EBCV for short).

Note that the first summand in the metric dsfml is as a conformal change of the Euclidean metric
on R*, whereas the three other summands (depending on m and [) are coming from the imaginary
part of ¢ dq, for a quaternion q. When m = 0 we get a one-parameter family of Riemannian metrics
depending on [. Furthermore, if [ = 1, we find the 7-dimensional quaternionic Heisenberg group
(see [9] and [19]). The manifold EBCV provides another example of sub-Riemannian geometry
and the horizontal distribution is a 2-step breaking-generating distribution everywhere.

Observe that when m = [ = 0, EBCV is nothing but R”; when m > 0,] = 0, EBCV =
S*(4m) x R3 and when m < 0,1 =0, EBCV = H*(4m) x R3.

The metric ds?,, can also be written as

7
dsfml = Zwa ® we,
a=1

where
w' = dr + g (wdz — wdw + ydz — zdy), wh = duw,
WP = ds + gk (wdy — ydw + zdx — xd2), W’ = gz,
WP = dt + 5 (wdz — zdw + xdy — ydz), W = gedy,
1
u}7 = FdZ,

with the corresponding dual orthonormal frame

Xl = 67-, X2 = 857 X3 = 8t7



_ Lz ly lz B lw lz ly
X4_Kaw+§a7'+583+58t7 X5 —K@m—iar—aas—l—iﬁt,

lz lw lz ly lx lw
Xﬁ—Kﬁy—i—E&—?ﬁs—E@t, X7—K8Z—§8r+585—?8t

Writing 1 <14,5 < 3,4 <a <7, we find that
[Xi, X5] = 0; [Xi, Xo] =0,
as well as
(X4, X5] = — {1 + m(y* + 2°)} X1 + ml(wz + 2y) Xo — mi(wy — 12) X3 — 2mz X, + 2mwXs,
and so on (see Appendix).

For later use, when m = 0 brackets reduce to

(X4, X5] = —1Xq, (X4, Xo] = —1Xs, (X4, X7| = —1X5,
[X57X6] = _ZX3> [X57X7] = lX2) [XﬁaX'?] = _le

Remark 1 When | =1, we have the brackets of the quaternionic contact manifold.

As for the Levi-Civita connection we find out
Vx,X; =0, Vx,Xe = Vx,Xi,

and
l l l
Vx, X4= 5{1 +m(y? + 22} X5 + m?(wz —xy)Xg — %(wy + x2) X7,
l l l
Vx, X5 = —5{1 +m(y? + 2%} Xy + %(wy +x2)Xg + m?(wz —xy) X7,

l l l
E(wz —xy) Xy — %(wy +x2) X5 + 5{1 + m(w? + x2)}X7,

Vx, X¢ =— 5
l [ l
Vx, X7 = m?(wy +x2) X4 — m?(wz —zy) X5 — 5{1 + m(w? + %)} X,
and son on (see Appendix).

When m = 0, the Levi-Civita connection reduces to

Vx, X4 =L X5, Vx, Xs = 1 X7, Vi, Xa =Xy, Vax, Xy = L X5,
Vx, X5 = =Xy, Vx, X5 = £ X, Vx, X5 =0, Vi, X5 = =1 Xo,
Vx, X6 = £ X7, Vi, X6 — 5X5, Vi, X = —1 X3, Vx, X6 = LX1,
Vx, X7 = —1 X, Vx, X7 = —1Xy, VX7 = 1 X5, Vx. X7 =0.
Vx, X4 = £ X, Vx, X4 =0, Ve Xy = £ Xo,

Vx, X5 = - X7, Vx, X5 = —1Xi, Ve Xs = £ X3,

Vx,Xe = =1 X4, Vx,Xe = —1Xo, VX6 = 0,

Vx, X7 =1 X5, Vx, X7 =-1X;, Ve X7 = —1Xy,



Remark 2 When | =1, we find the Levi-Civita connection of the quaternionic contact manifold.

As for the curvature tensor R we have

2

[
Rx,x,xixs = Bxixx, x5 = Z{l +m(K +1)(y* + 24},

2

[
RX1X6X1X6 = RX1X7X1X7 == Z{l + m(K -+ 1)(w2 + .TQ)},

and so on (see Appendix).

Remark 3 When m = 0, the curvature of the quaternionic contact manifold reduces to

[? 302
RXZ-XQXZ-XQ = Z; RXaXbXaXb = _T'

2.2 The Ricci tensor

Proposition 4 The matrix representing the Ricci tensor is given by

(K% +1) 0 0
0 E(K24+1) 0
0 0 E(K?4+1)
—miz(K +2) —mly(K+2) —miz(K+2)
miw(K +2) miz(K+2) —mly(K+2)
—miz(K+2) mlw(K+2) milz(K+2)
mly(K+2) —mlz(K+2) miw(K +2)
—mlz(K + 2) mlw(K + 2) —mlz(K + 2) mly(K + 2)
—mly(K +2) mlz(K + 2) mlw(K + 2) —mlz(K + 2)
—miz(K + 2) —mly(K +2) miz(K + 2) mlw(K + 2)
AK —1—muw?) + B mi?(K + 1wz mi%(K + 1)wy ml*(K + 1wz
ml?(K + 1wz A(K —1—-ma2?)+ B mi*(K + 1)zy ml*(K + 1)zz
ml*(K + 1wy ml?>(K +1zy AK —1—-my?)+ B mi*(K + 1)yz

mi?(K + 1wz

mi?(K + 1)xz

where A = —1*(K + 1) and B = 12m — 3/2[*.

Some particular cases could be interesting, for instance we get the following Ricci matrix when

K =1 (orm=0)

mi? (K + 1)yz

AK—-1-mz?)+ B




2 0 0 0 0 0 0

01”0 0 0 0 0

0 0 [? 0 0 0 0
Ric,=| 0 0 0 -—-3/21° 0 0 0

0 0 0 0 —3/21* 0 0

0 0 0 0 0 —3/21? 0

0 0 0 0 0 0 —3/2I?

Remark 5 When | =1, we find the Ricci curvature of the quaternionic contact manifold.

An easy computation leads to

Corollary 6 The EBCV manifold has constant scalar curvature S = 48m.

3 The characteristic connection on the £BCV manifold
We consider on EBCYV the characteristic connection D defined by (see [7])
P
DM = VM + Z(VLP)M,

where P is the natural almost product structure given by P =V —'H, Id =V + 'H and L, M are
arbitrary vector fields. Let us remember that the vertical distribution in EBCYV is spanned by
X1, X5, X3 and the horizontal distribution by Xy, X5, X¢, X7. Then we have

Dx.X; = V(Vx. X)), i,j = 1,2,3,
Dy, X; =V(Vx,X;)
Dx. Xy =H(Vx,Xp), i =
Dx, X, = H(

This is a metric connection which can be completely obtained by using the table giving the
Levi-Civita connection.

Following the classification given by A. M. Naveira for almost product structures, [12], we have
Proposition 7 (EBCV, P) is in (TGF, AF) class.

To prove this proposition it is enough to see that V4(P)B = 0, when A, B are vertical, and
Vx(P)X = 0, if X is horizontal. The result follows using the tables given in the Appendix for
the Levi-Civita connection.

When we consider m = 0, it is known that EFBC'V is a homogeneous manifold. Indeed, it
is the quaternionic contact group (see [9, 19]). In [1] W. Ambrose and I. M. Singer proved that
a connected, complete and simply-connected Riemannian manifold (M, g) is homogeneous if and
only if there exists a (1,2) tensor field T" such that

6



(ii) (VxR)yz = [Ty, Ryz] — Bryyz — Ryryz,

(111) (VXT)Y = [Tx,Ty] — TTXy,
for X,Y,Z € X(M), where V stands for the Levi-Civita connection and R is the Riemann cur-
vature tensor of M (see [16]). As a consequence, Tricerri and Vanhecke define a homogeneous
Riemannian structure on (M, g) as a (1,2) tensor field 7" which is a solution of the above three
equations. Instead of taking (1,2) tensors it is prefered to work with (0,3) tensors via the isomorp-
hism Ty = g(Tyv,w), for u,v,w € T,M and p € M. So far we have not been able to find the

tensor field T satisfying the above conditions, which are equivalent to those given in page 14 of
[16]. Then allow us to state the following question: is EBCV a homogeneous manifold?

Let T = TP be the torsion tensor of the connection D, that is,
TPM =TP(L,M)= DM — Dy L — [L, M],

or equivalently

TP(L,M) == ((V,P)M — (VuP)L).

|

Then we find out
TP (X3, X)) =0, k=1,...7.

There are non-vanishing components such as T (X;, X,) or T?(X,, X;), for instance,

) Im lm
TD(Xl, Xy) = 5{1 + m(y2 + zg)}X5 + 7(wz — zy) Xe — 7(wy +x2) X7

or
TP (X4, X5) = (1 +m(y? + 22) X1 — m(wz + 2y) Xy + m(wy — 22) X3}

On the other hand, it is easy to see that

(a) T% xuxs T Tooxyxy + TRoxsx, = (T3, Xa, X5) + (T, X0, Xa) + (TR, X5, X1) = 21 # 0;

(b) T)l()YZ + T}l/)XZ =0.

4 Killing vector fields in £EBCV

Remember that a Killing vector field is a vector field on a Riemannian manifold that preserves the
metric. Killing vector fields are the infinitesimal generators of isometries, that is, flows generated
by Killing fields are continuous isometries of the manifold. Specifically, a vector field X is a
Killing vector field if the Lie derivative with respect to X of the metric g vanishes: Lxg =0 or
equivalently

EXdSl%m = (EXu)a) X w* = 0, (1)

where
Lxw® = 1xdw + d(Lxw®).

7



In terms of the Levi-Civita connection, Killing’s condition is equivalent to

It is easy to prove that
Proposition 8 Lxg(Y,Z) =0 if and only if Lxg(X;, X;) =0 for basic vector fields X;, X;.

We know that the dimension of the Lie algebra of the Killing vector fields is m < n(n+1)/2
and the maximum is reached on constant curvature manifolds ([8], p. 238, Vol. II) , then for our
manifold m < 28. Then obviously

Proposition 9 The basic vertical vector fields X1, Xs, X3 are Killing fields.

From (2) it is easy to prove that the horizontal basic vector fields Xy, ..., X7 are not Killing
vector fields.

In [13] the Levi-Civita connection, curvature tensor and Killing vector fields on Bianchi-Cartan-
Vranceanu spaces are introduced. In [14] Piu and Profir proved that the Lie algebra of Killing
vector fields of BC'V spaces is 4-dimensional for generic parameters m and [.

Now we are going to determine the space of Killing vector fields in EBCYV .

4.1 The Killing equations

In the usual coordinate system (r,s,t, w,x,y,z) on EBCV, a vector field X = 22:1 faXy will
be a Killing field if and only if the real functions f; satisfy the following system of 28-partial
differential equations:



9r(f1) =0,

9s(f2) =0,

at(fS) =0,

9, (f2) + 0s(f1) = 0,

9 (f3) + 9(f1) = 0,

9s(f3) + 0(f2) = 0,

Or(f1) + Kw(f1) + %0s (1) + 50:(f1) = Y1 +m(y® + 2%)} f5 — ml(wz — ay) fo + mi(wy + 2z) fr = 0,

Op(f5) + K0:(f1) — 50:(f1) + FO(f1) + {1+ m(y* + 2°)} fa = mi(wy + 22) fo — ml(wz — 2y) fr =0,

O (fo) + KOy(f1) — 20(f1) — L0, (f1) + ml(wz — zy) f1 + ml(wy + x2) fs — {1 + m(w? + 2%} fr =0,

Or(f7) + KO.(f1) + 20s(f1) — 20,(f1) — mi(wy + 22) fa + mi(wz — 2y) f5 + {1 + m(w? + 22} fo = 0,

0s(f1) + KO (f2) + 50, (f2) + 50:(f2) + ml(wz +xy) f5 — {1 +m(a® + 2%)} fo — ml(wa — y2) fr =0,

0s(f5) + Ko (f2) = 0. (f2) + %0u(f2) — ml(wz + wy) fa + mi(wa — yz) fo + {1+ m(w? +y?)} fr =0,

0s(fo) + K0y(f2) — 50,(f2) — §r(f2) + {1 + m(a® + 2%)}fa — ml(wz — yz) f5 — ml(wz + zy) fr =0,

0s(f7) + K0:(f2) — §0:(f2) — B 0:(fo) + ml(wz — yz) fa — {1 + m(w? + y)} f5 + ml(wz + 2y) fo = 0,

Oy (fa) + KO (f3) + 20:(f3) + L0s(f3) + ml(wy — z2) f5 + ml(wz + yz) fo — {1 +m(z® + y?)} fr = 0,

O (f5) + K0y (f3) — 520, (f3) — £0s(f3) + ml(wy — x2)} fa — {1+ m(w? + 2%)} fs + ml(wz + y2) fr = 0,

O (fo) + KOy (f3) + £0:(f3) — L0(f3) — mi(wz + yz) fa + {1 + m(w? + 22} f5 + ml(wy — x2) fr = 0,

Oy(fr) + K0.(f3) — 20:(f3) + £0.(f3) + {1 + m(a? + y*) } fa — ml(wa + yz) f5 — ml(wy — x2) fg = 0,
K0u(f1) + 20,(f1) + L0s(f2) + £0:(f1) — 2mafs — 2myfs — 2mzfr = 0,

Ku(f5) + 50,(f5) + %0s(f5) + 50u(f5) + Ko (fa) = 50-(f2) — 505 (f2) + $0u(f2) + 2ma fa + 2mwfs = 0,
Ky (fo) + 20,(fo) + L0s(fo) + £0:(fo) + KOy (f1) + £0,(f2) — 20, (f1) — L0:(fa) + 2myfu + 2mwfg = 0,
Kow(fr) + 50,(f7) + L0s(fr) + 20:(f7) + KO.(f1) — L0 (f2) + 20s(f2) — '20u(f2) + 2mzfs + 2muw fr = 0,
Ku(f5) — 20, (fs) — 20(f5) + L0u(f5) — 2mwfs — 2myfs — 2mzfr =0,

K,(fs) = '§0:(fo) = 50u(fo) + F0u(fo) + KO, (f5) + §0,(f5) = '§0u(fs) = §Ou(f5) + 2myfs + 2mafs =0,
K0u(f7) = 0.(f7) = 20.(f2) + B0u(f7) + KO(f5) — %0:(f5) + 50:(f5) — 5 0u(f5) + 2mzf5 + 2mafr = 0,
Koy (fs) + £0,(f6) — 2L0:(fs) — L0u(fs) — 2mw fy — 2mafs — 2mzfr = 0,

Koy (fr) + 20:(fr) — L0(f7) — 20u(fr) + KO.(fos) — L0 (fs) + 20s(f6) — L0y (f6) + 2mzfs + 2myfr =0,
KO.(f7) = %0:(f7) + 505(f7) — 50u(f7) — 2maw fu — 2ma f5 — 2my fo = 0.



It seems that the solution of the system is very difficult, so that we focus on solving the system
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whose solution is given by

fl(r,s,t,w,:c,y,z):(P—I—R)s—l—(S—N)t—i—é{—M(wz—l—xQ)—U(y2+z2)+(R—P)(UJy+xz)

(N+S)( 2 —ay) + 2Tw — 2Qx + 2Wy — 2V z} + O,
folr, s, t,w,z,y, 2) = (P+R)r+(M+U)t——{N(w +¢°) — S(2* + 2°) + (R — P)(wz — yz)
+ (M -U)(wz+zy) —2Vw + 2Waz +2Qy — 2Tz} + Cs,
fa(ry s, t,w, x,y,z) = —(S — N)r—(M+U)s——{P(w + 2% + R(2* + *) + (N + S)(wx + y2)
+ )

U— M) (wy —xz) —2Ww —2Vz + 2Ty + 2Qz} + Cs,
( 2) =Mz + Ny+ Pz +Q,
f5(r,s,t,w,z,y,2) = —Mw+ Ry + Sz + T,
fe(r,s,t,w,z,y,2) = —Nw— Rt + Uz +V,
( 2)=—Pw— Sz —Uy+W,

f4 T7S7t7waxay7

f? r7s7t7w7x>ya

where M, N, P,Q, R, S, T,U,V,W,Cy,C5,C5 € R.
As a consequence, when m = 0, we obtain

Proposition 10 The Lie algebra of Killing vector fields is 13-dimensional.

5 Computing horizontal geodesics of the quaternionic Hei-
senberg group

Following the computations in [11], the vector fields

W =0, +1(:E8 + y0s + 20,),
1

X =0, — i(wﬁr—l—zas — y0y),

Yzﬁy—l—%(z&—w@s—x@t),

Z =0, — %(y@r — x0s — w0}),

which are the old Xy, ..., X7 ones, provided m = 0,1 = 1, along with {0,,J, 0;}, form an ort-
honormal frame for the quaternionic contact manifold H x ImH. This means that {W, X, Y Z}

frame the fourth plane H and they are orthonormal with respect to the inner product ds* =
(dw? + dz* + dy? + dz*)|3; on the distribution. The sub-Riemannian Hamiltonian writes down as

1
H:§(PV2V+P)2(+P§+P§), (3)

11



where Py, Px, Py, Pz are the momentum functions of the vector fields W, X, Y, Z, respectively.
Thus

1
PW = Pw + §(xpr + yps + Zpt)a

1
Px =p, — §(wpr + 2ps — Ype),

1
Py =p, + 5(21% — wps — TPt),

1
Py =p. — i(ypr — IPs +wpt)7

where Dy, Pu, Py, P2, Pry Ds, pr are the fiber coordinates on the cotangent bundle of R” correspon-
ding to the cartesian coordinates w,x,y, z,7,s,t on R”7. Again, these fiber coordinates are de-
fined by writing a covector as p = pydw + pdx + pydy + p.dz + p,dr + psds + pdt. To-
gether, (w,x,y,z,7,5,t,Pw, Pus Dy, Pz, Pr, Ps, Pt) are global coordinates on the cotangent bundle
T*R” = R” @ R”. Hamilton’s equations can be written

T _ip.my, fec=am) ()

which holds for any smooth function f. The function H defines a vector field Xy, called the Hamil-
tonian vector field, which has a flow ®, : T*R” — T*R". Let f : T*R” — R be any smooth function
on the cotangent bundle. Form the u-dependent function f,, = ®; f by pulling f back via the flow.
Thus fu(w,x,y, 2,7, 8,t, Duw, Das Py Pz Pry Dsy ) = f(Pu(w, 2,9, 2,7, 8,, Dws Dy Pys Pz, Pry Ps, D). I
other words % = Xpg[fu], which gives meaning to the left-hand side of Hamilton’s equations.

To define the right hand side, which is to say the vector field Xy, we will need the Poisson
bracket. The Poisson bracket on the cotangent bundle T*R” of a manifold R7 is a canonical
Lie algebra structure defined on the vector space C°°(T*R") of smooth functions on T*R7. The
Poisson bracket is denoted {-,-} : C°° x C> — C*°, where C*° = C*(T*R"), and can be defined
by the coordinate formula

af 99 99 0f

0x' dp;  Ox' Op;
This formula is valid in any canonical coordinate system, and can be shown to be coordinate
independent. The Poisson bracket satisfies the Leibniz identity

{f.gh} = g{f.n} +1{f g},

which means that the operation {., H} defines a vector field Xy, called the Hamiltonian vector
field. By letting the functions f vary over the collection of coordinate functions z* and we get the
more common form of Hamilton’s equations

_oH . OH
~ ope’ DT T

ia

Indee;i, for the first one we take f = w and ¢ = H. Then {w, H} = g;f’i g—g — ggg—; if and only if
_H

s Also we have
Pw

w =

_oH . _om . _oH
op,” Y opy’ op.’

x
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These equations are in turn equivalent to the above formulation (4), which is more convenient
to use, because the momentum function W — Py is a Lie algebra anti-homomorphism from the
Lie algebra of all smooth vector fields on R” to C(T*R") with the Poisson brackets:

{Pw,Px}=—Pwx), {Pw,Pr}=—-Pwy), {Pw,Pz}=—Pwz,

(5)
{Px,Pv}=—Pxy), {Px,Pz}=—-Pxz, {Pv.Pz}=—-Pyz

Since all calculations are similar, we only prove the first one:

x Y z w z y
{Pw, Px} = {pw + 5Pr + oPs + 5Pt Px = 5 Pr = 5Ps + 5]%} =p, = —Pwx.

For the quaternionic contact group, with our choose of W, XY, Z as a frame for H, we compute

[W7 X] = _87“7 [I/Va Y] = _887 [Wv Z] = _ata
[X7 Y] = =0, [X> Z] = 0, [Y> Z] = =0,
[W7 ar] = [VV, 67«8] = [VV, at] = [Xv ar] = [X7 85] = [Xa 815] = 07

,8,] = [v,0] = [Y,8)] = [2,8,] = [2,0)) = [Z,8] = 0.

Thus
{PW7PX}:8T::PT7 {PW7PY}:as::PSJ {PW7PZ}:at::Pt7

{Px,Pv}=PF, {Px,Pz}=-ps=—-PF, {Pv,Pz}=p=Ph
We can prove that
{Pw, P} = {Pw, P} = {Pw, P} ={Px, P} = {Px, P} ={Px, P} =0,
{Pv. P} ={Pv, B} ={Pv, P} ={Pz, P} = {Pz, P} = {Pz, I} = 0.

These relations can also easily be computed by hand, from our formulae for Py, Px, Py, Pz
and the bracket in terms of w, z,y, 2,7, 5,7, Pw, Dzs Dy, Dz, Prs Ds, Pt-

Lemma 11 By letting f vary over the functions w,x,y, z,r, 8,7, Pw, Px, Py, Pz, P., P;, P;, using
the bracket relations and equation (5), we find that Hamilton’s equations are equivalent to the
system

w = Py, Py = prPx +psPy + Py,
T = Px, Px = =p,Pw — psPz + pi Py,
y= Py, Py = p. Pz — ps P — piPx,
Z= Py, Pz = —pr Py + psPx — pi P,
7= %(QZPW —wPx + zPy —yPyz), P.=0,
S:%(ypw—sz+$Py—wpz), PSZO,

t = %(ZPW +yPx —xPy —wPy), P, =0.

13



To see it, remember that H = (P}, + P% + PE + P?). Then

0P,
o= o) = PO gy
0P
i ={z,H} = Px apf = Py,
Z):PY;
Z:PZ.

Also, considering that:

op, 2’ Ops 2’ op, 2’

(9PX w 8PX ¥4 6PX
8p7« 2 ’ aps 2’ apt

oPy =z 0Py w 0Py x

op, 2 Ops 2’ opy 2’
8PZ__y apz_.Q? 8PZ__w
op, 2 ops 2’ op, 2’
we have {
f’Ii(SL’Pw—U)PX—i-ZPy—yP2>.
Indeed,

8PW 8PX aPy aPZ

={r Hl = P, P P, P
F=An ) " ap, * * op, * YaprJr 2 op,
1
:i(a:'PW—wPX—i-zPy—yPZ)
) 0Py 0Py 0Py 0P,
— Hl=P P P P,
d={s M) " ap, * * op, * Y8p5+ 7 0
1
:§<ypw—sz+l’Py—wpz)
. aPW 8PX aPY 8PZ
t={t H' =P, P P, P
{7 } Wapt+Xapt+Y8pt+Zapt
1

Working as above we obtain
Py = {Pw,H} = p.Px + ps Py + pi Py,
Px ={Px,H} = —p, Pw — ps Pz + p: Py,
Py ={Py,H} = p,Py — p;Pw — p:Px,
Py ={Py,H} = —p, Py + p;Px — p;Pw.

14



Then we are ready to show the following

Theorem 12 The horizontal geodesics of the quaternionic Heisenberg group are exactly the hori-
zontal lifts of arcs of circles, including line segments as a degenerate case.

Proof. It is not difficult to see that P,, = Ps = Pt = 0. These equations assert that P. = p,,
P, = p, and P, = p; are constant. The variables r, s,t appears nowhere in the right-hand sides
of these equations. It follows that the variables w, x, v, z, Py, Px, Py, Pz evolve independently of
r,s,t, and so we can view the system as defining a one-parameter family of dynamical systems on
R® parameterized by the constant value of P,, P,, P,.

Combine w, z,y, z into a single quaternionic variable w = w + ix + jy + kz and taking into
account the fourteen equations one has

dw

& Py +iPx + jPy + kP,

du
The u-derivative of Py + iPx + jPy + kPz is —(ip, + jps + kpi)(Pw +iPx + jPy + kPz). Then
we have %; = —(ip, + jps + kpt)z—z, where p,, p, and p; are constant.

By integrating the above expression we get
Py +1iPx + jPy + kPz = P(0)exp(—(ip- + jps + kpt)t),

where P(0) = Py (0) +iPx(0) + jPy(0) + kPz(0) .

A second integration yields the general form of the geodesics on the quaternionic contact group:

wu) =wu) +izx(u) + jy(u) + kz(u) =
P(0)
ipr + jps + kpt

r(u) =r(0) + %/0 Im; (@ dw),

(exp(=(ipy + jps + kpe)t — 1) +w(0) +ix(0) + jy(0) + k2(0)) ,

s(u) = s(0) + %/0 Im (@ dw),

r(u) =t(0) + %/o Img (@ dw).
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6 Appendix

The brackets:

The Levi-Civita connection:

l ml ml
Vx, X4 = §{1 + m(y2 + 2,'2)}X5 + 7(11)2 —zy)Xe — 7(wy + x2) X7,

Vx, X5 = —%{1 +m(y? + 23} Xy + m?l(wy +22) X6 + m7l(wz — zy) X7,
Vx, X6 = —%l(wz —xy) Xy — %l(wy +x2) X5 + é{l +m(w? + 2?)} X7,
Vx, X7 = %l(wy +x2) Xy — %l(wz —xy) X5 — é{l + m(w2 + $2)}X6,

Vx, X4 = —%l(wz +zy) X5 + é{l +m(x? 4+ 22)} X6 + %l(wx —yz) X7,
Vx, X5 = m?l(wz +xy) Xy — %l(wx —yz)Xe — é{l +m(w? + y*)} X7,

Vx,Xe = —%{1 +m(x? + 23} X, + %l(wx —y2) X5 + m?l(wz + xy) X7,
Vx,X7 = —%l(wx —y2) X4+ é{l +m(w® +y*)} X5 — %l(wz + 2y) X,

l l l
Vx, X4 = m?(wy —x2) X5 — m?(wx +yz)Xe + 5{1 +m(z? + y?)} X7,

ml

l l
Vx, X5 = —7(wy —x2) X4 + 5{1 +m(w? + 2%)} X6 — m?(wx +y2z) X7,
l l [
Vx,Xe = %(wx +yz) Xy — 5{1 +m(w? + 2%} X5 — m?(wy —x2) X7,
l l l
Vo Xr = =5 {1+ m(@? + )} Xa + T (wz + y2) X5 + - (wy — 22) X,
Vix, X4 =2m(zX5 + yX¢ + 2X7),
l 9 9 ml ml
Vx, X5 = —5{1 +m(y” +27)} X1 + 7(wz +zy) Xo — 7(wy —x2) X3 — 2mzXy,
l l l
Vx, X6 = —%(wz —ay) X1 — 5{1 +m(e? +2%) )Xo + m?(w»"f +y2) X5 — 2myXy,
l l l
Vi, Xy = S (wy +22) X1 = T (wr — y2)Xa — 3{1+m(a® + )} Xs — 2maX,
l l l
Vx, X4 = §{1 +m(y? + 25X, — m?(wz + xy)Xo + %(wy —z2) X3 — 2mwXs,
VX5X5 = 2m(wX4 —|— yX6 + ZX7),
ml ml l 9 9
Vx,X¢ = —7(wy +x2) X1 + 7(11130 —yz)Xs — 5{1 + m(w® + 2°)} X3 — 2myXs,

ml l ml
Vi, X7 = —7(102 —ay) X1+ 5{1 +m(w? + )} X + ?(wx +yz) X3 — 2mz X5,
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iy

l ml
Vx, X4 = 5 (wz = xy) X1 + 5{1 +m(x? + 22} Xo — 7(101‘ +y2) X3 — 2mwXg,

Y

l l
Vx, X5 = 5 (wy +ax2)Xy — %(wx —yz)Xo + 5{1 +m(w?® + 2%} X5 — 2maz X,

Vx,Xe =2m(wXy + 2 X5 + 2X7),
l 9 9 ml ml

Vx X7 = 75{1 +m(w” +27)} X — 7(102 +zy) Xo + 7(wy —x2)X3 — 2mzXg,
ml ml l 9 9

Vx, X4 = f?(wy +xz) X1 + ?(wx —yz)Xo + 5{1 +m(z* +y°)} X3 — 2mwXoy,
l ! l

Vix, X5 = %(wz —ay) X1 — 5{1 +m(w? +y%)} Xs — %(wx +y2) X5 — 2ma Xy,

l l l
Vx. X = 5{1 +m(w? + 2?)} X, + m7(102; + ay)Xo — m7(wy —x2) X3 — 2my Xy,
VX7X7 = 2m(wX4 + $X5 + yX6>

The curvature tensor:

l2

Rx x,x1x, = Bx, x5x,x5 = Z{l +m(K +1)(y* + 24},
l2

RX1X6X1X6 = RX1X7X1X7 == Z{l + m(K + 1)<w2 + .TQ)},

l2
Rx,x,x:x, = Rx,xex0%5 = Z{l +m(K +1)(2* + 2%)},

l2

Rx,x55x:%5 = Bxoxox0x7 = Z{l + m(K +1)(w? + y*)},
12

Ry, xix5xs = Bxsxrx5%, = Z{l +m(K +1)(z® +y*)},

l2
Rxyxsxsxs = Rxaxoxsxe = Z{l +m(K + 1) (w? + 24},

Ry, x5x.x, = 4m — 3Rx, x,x, x4
Rx, xsx.xs = 4m — 3Rx, x,x, X,
Rx,x7x,x; = 4m — 3Rx,x, X3 x4
RX5X6X5X6 = 4m — 3RX3X5X3X57
Rx;x,x5x; = 4m — 3Rx, x5 X5 X5

Rxyx7xx, = 4m — 3Rx, x4x, X -
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