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Graphical abstract 

 

Our study investigates the relative contribution of genetic and environmental factors 

to the timing of food timing and related behaviors. Our results show that the 

heritability of the midpoint of intake, the midpoint between breakfast and dinner, was 

64%. In addition, trait heritability was higher for breakfast than lunch, whereas no 

heritability was detected for dinner. These results suggest that interventions related to 

food timing may be more effective when targeting afternoon/evening behaviors, such 

as lunch or dinner times. 

*Represents the shared environmental factors

Food Timing Heritability

Midpoint of intake

Timing of breakfast

Timing of lunch

Timing of dinner

64% 36%

56% 44%

38% 62%

* 61%
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Abstract 26 

Background and aims: While environmental factors are presumed to be primary drivers of 27 

food timing, preliminary evidence suggests that genetics may be an additional determinant. 28 

The aim was to explore the relative contribution of genetics and environmental factors to 29 

variation in the timing of food timing in a Spanish twin population. Because chronotype, 30 

bedtime and wake time are related to food timing, covariance with food timing was further 31 

assessed. 32 

Methods: In this observational study, 53 pairs of adult (mean(SD)=52(6.03) years) female 33 

twins (28 monozygotic; 25 dizygotic) were recruited from the Murcia Twin Register. 34 

Zygosity was determined by DNA-testing. Timing of the three main meals of the day was 35 

assessed via 7-day dietary records, and the midpoint of food intake was computed by 36 

calculating the midpoint between breakfast and dinner times. Chronotype, bedtime and wake 37 

time were self-reported. Heritability of food timing and related traits were estimated by 38 

comparing monozygotic and dizygotic twin correlations and fitting genetic structural equation 39 

models to measured variables.   40 

Results: We observed genetic influences for food timing, with highest heritability for the 41 

midpoint of food intake (64%) in an overweight/obese population (BMI=26.01±3.77). Genetic 42 

factors contributed to a higher degree to the timing of breakfast (56%) than the timing of 43 

lunch (38%) or dinner (n.s.). Similarly, heritability estimates were larger in behavioral traits 44 

earlier on in the day (i.e. wake time, (55%)), than those later on in the day (i.e. bedtime, 45 

(38%)). Bivariate analyses revealed a significant genetic overlap between food timing and 46 

bedtime and chronotype (rg between .78 and .91). 47 

Conclusions: Genetic influences appear to account for a significant proportion of the 48 

variaibility in food timing, particularly breakfast. Thus, interventions related to food timing 49 
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may be more effective when targeting afternoon/evening traits, such as lunch or dinner times. 50 

Furthermore, our data suggest shared genetic architecture underlying food timing and 51 

phenotypically related traits. 52 

Clinical trial: NCT03059576. https://clinicaltrials.gov/ct2/show/NCT03059576 53 

Keywords Food timing, Dietary intake, Heritability, Twins. 54 
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Introduction 55 

Secular trends from national surveys indicate shifts in the timing of food intake towards later 56 

timing [1]. This late eating habit has been associated with adverse health outcomes such as 57 

estimated higher odds of being overweight/obese [2, 3] and impaired glucose tolerance and 58 

insulin secretion [4, 5]. Moreover, later consumption of the main meals of the day, as 59 

determined by self-reported food timing, has also been shown to hinder weight loss during a 60 

dietary intervention [6, 7] and following bariatric surgery [8]. Adverse effects of later meals 61 

have also been suggested by experimental studies. In randomized, crossover studies, it was 62 

shown that a later lunch decreases resting-energy expenditure, fasting carbohydrate oxidation 63 

and glucose tolerance [5, 9, 10], later dinner times worsens postprandial glucose profiles for 64 

the following morning’s breakfast [11], and later consumption of the main meal of the day 65 

inverts the salivary microbiota 24-rhythm [12]. Moreover, to include a high-energy breakfast 66 

plus a low-energy dinner reduced metabolic risk compared with a meal pattern with a low-67 

energy breakfast plus a high-energy dinner [13]. 68 

These recent findings emphasize the importance of food timing as a novel dimension 69 

in nutrition science [6, 14, 15]. Indeed, the timing of food intake is newly proposed as a 70 

modifiable risk factor for weight management and chronic disease prevention [16]. As food 71 

timing is likely a complex trait, like food composition [17], elucidating the genetic and 72 

environmental components that contribute to the variability in food timing for individual 73 

eating episodes is necessary. Unraveling those components is relevant in designing more 74 

effective and individually tailored therapeutic strategies related to food timing and 75 

developing public health initiatives tackling later food intake and understanding biological 76 

pathways regulating decisions related to food timing [18, 19]. Whereas environmental 77 

determinants of food timing such as chronotype, caloric density [20], and sleep [21-24], have 78 

been explored in epidemiological studies, genetics remains under-investigated [9]. 79 
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Thus far, only a single study has investigated the heritability of food timing [25]. In 80 

that twin study from the United States, the highest heritability was observed for the timing of 81 

breakfast (24%), while lunch and dinner timing showed lower heritability estimates (ranging 82 

from 18-22%) [25]. Other related studies provide additional support for the putative genetic 83 

component of food timing. For instance, genetic influences have also been suspected for 84 

night eating syndrome (NES) and sleep-related eating disorder (SRED), two eating disorders 85 

with evening eating preference [26]. We have previously reported an association between a 86 

genetic variant in CLOCK (rs4580704) and lunch time [6]. Moreover, we reported that food 87 

timing modifies the association between a genetic variant in the PLIN locus and the efficacy 88 

of a weight loss intervention [27]. In addition, no study to our knowledge has investigated the 89 

genetics of food timing along with closely related heritable traits that may explain the 90 

metabolic implications of later food intake and unravel shared genetic architecture among 91 

those traits. 92 

Findings from twin studies have indicated that genetics plays a major role in several 93 

diet-related phenotypes including energy and macronutrient intakes, dietary patterns, and the 94 

intake of specific foods [28]. Twins provide a naturally unique case-control experiment 95 

whereas the classical twin design compares the similarity of identical/monozygotic (MZ) and 96 

dizygotic (DZ) twins. Genetics are implicated in the investigated trait when MZ twins are 97 

observed to be considerably more similar than DZ twins. The aim of our current investigation 98 

was to explore the relative contribution of genetics and environmental factors to variation in 99 

the timing of the three main meals of the day (i.e., breakfast, lunch and dinner) in a twin 100 

population. Because chronotype, bedtimes and wake times are related to food timing, co-101 

variation with these traits was further assessed. 102 

Methods 103 

Subjects 104 
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In this observational study, a sample of female twins selected from the Murcia Twin Register 105 

(MTR) participated in this study. The MTR is a population-based registry of people born 106 

between 1940 and 1966 in the region of Murcia, southeast Spain. The twin pairs that form the 107 

MTR are assumed to be representative of the general Spanish population [29]. The registry 108 

has collected information from >2200 individual twins. More detailed description regarding 109 

characteristics and procedures of the MTR can be found elsewhere [30, 31]. Written informed 110 

consent was obtained from all participants. The Committee of Research Ethics of the 111 

University of Murcia has approved MTR data collection procedures and management; the 112 

protocol follows national regulations regarding personal data protection. 113 

 Using a regional health system database, female pairs living within the same 114 

geographical area, and within a 30-km radius from the recruitment center, and free from 115 

severe health condition that may impede or hinder participation such as cognitive disorders, 116 

diabetes mellitus, chronic renal failure, hepatic diseases or cancer were selected for inclusion 117 

in this study. A total of 118 twin pairs were recontacted (between 2012 and 2014), and a total 118 

of 53 pairs of adult female twins (N=106) volunteered for this study (28 MZ; 25 DZ). This 119 

sample size has been shown to be enough to assess the heritability of cronotype and other 120 

related features [32, 33]. Zygosity was confirmed by DNA testing. 121 

Timing of food intake 122 

The primary outcome of the present study was the timing of food intake. The timing of food 123 

intake was self-reported via a 7-day food record. Specifically, participants recorded the start 124 

time, finish time, and duration of individual food intake episodes during 5 weekdays and 2 125 

weekend days. Midpoint of intake was ascertained by calculating the midpoint between 126 

breakfast and dinner times (first and last eating episode). Participants were instructed and 127 

trained on how to accurately complete the food records at the start of the study, and collected 128 

data were later reviewed with a technician.  129 
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Sleep and Chronotype 130 

Participants also recorded information related to sleep including bedtime and wake time 131 

during the same 7-day period. Chronotype was assessed using the Morningness-Eveningness 132 

(ME) questionnaire, a 19-item scale developed by Horne and Östberg, and an ME score was 133 

computed [34]. A higher ME score reflects more morning (earlier) chronotype. 134 

General characteristics of the sample/subjects and procedures 135 

Body weight was estimated in barefooted participants wearing light clothes using a digital 136 

scale accurate to the nearest 0.1 kg. Height was determined using a portable stadiometer 137 

(rank, 0.14-2.10) and subjects were positioned upright, relaxed, and with the head in the 138 

Frankfort plane. Body Mass Index (BMI) was calculated by weight (kg) divided by height 139 

(m2). Total body fat was determined by bioelectrical impedance, using TANITA TBF-300 140 

(Tanita Corporation of America, Arlington Heights, IL, USA) equipment. In addition, waist 141 

to hip ratio was calculated using waist circumference (cm), at level of the umbilicus, and hip 142 

circumference (cm) [35].  143 

Statistical Analyses 144 

First, differences between MZ and DZ general characteristics were assessed by t-test. 145 

Heritability analysis was based on the basic logic of twin studies and can be summarized as 146 

follows: MZ twins (identical) share 100% of their genetic makeup, while DZ twins (non-147 

identical) share on average 50% of their segregating genes [36]. Comparing the resemblance 148 

(correlation) of MZ twins for a trait with the resemblance of DZ twins for that trait the total 149 

variance of a trait can be partitioned into genetic and environmental factors, following a 150 

variance components approach. Observed MZ and DZ correlations generally reflect a 151 

combination of additive (A; i.e., summed allelic effects across multiple genes) and non-152 

additive (D; i.e., genetic dominance, possibly including epistasis) genetic factors, as well as 153 

shared (C; i.e., common/family environment) and individual (E; i.e., idiosyncratic 154 
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experiences, including measurement error) environmental factors. A greater phenotypic 155 

resemblance in MZ twin pairs compared with DZ twin pairs must be due to genetic 156 

influences (A or D components), considering the assumption that both MZ and DZ twins are 157 

exposed to equal shared environments during childhood [37]. It is not possible to estimate C 158 

and D simultaneously in a classical twin model and the choice of modelling C or D depends 159 

on the pattern of MZ and DZ correlations; usually C is estimated if the DZ twin correlation is 160 

more than half of the MZ twin correlation (ACE model), and D is estimated if the DZ twin 161 

correlation is less than half of the MZ correlation (ADE model) [38].  162 

Structural equation models (SEM) offer a precise way to estimate the variance 163 

explained by each of the latent components (A, C, D and E) and determines the combination 164 

that best matches the observed data. For each variable, the full models (ACE/ADE) were 165 

estimated and tested against nested sub-models, where A component, C/D component or both 166 

(AC/AD) were fixed to zero. The log-likelihood ratio test (LRT) was used to compare the fit 167 

of the different models and sub-models. The difference in minus two times the log-likelihood 168 

(-2LL) between two models has a χ2 distribution with the degrees of freedom (df) equaling 169 

the difference in df between the two models. Additionally, model fit was evaluated using 170 

Akaike’s information criterion (AIC) which is a parsimony-adjusted statistic used to select 171 

among competing models. 172 

In the present study, all SEM were fitted to the raw data employing the full 173 

information maximum likelihood (FIML) method within the Open-Mx package v2.7.9 [39] 174 

for R v3.3.3 [40]. The accuracy of the obtained parameters was assessed using likelihood-175 

based 95% confidence intervals. Effect of age was regressed out from the raw scores using 176 

also the FIML procedure in Open-Mx. Subsequently, SEM were fitted to the residual scores. 177 

Data preparation and descriptive analyses were performed in SPSS v19 [41]. 178 

Results 179 
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The MTR population included in the present study comprised of 53 adult female twin pairs (n 180 

=106) with overweight/obesity (BMI= 26.01±3.77) and their general characteristics are 181 

presented in Table 1. Mean age of the selected participants was 52 years (SD: 6.0; Range: 182 

46-69). Mean timing of food intake was 8:43±00:53 for breakfast, 14:53±00:31 for lunch, and 183 

21:29±00:41 for dinner. The mean midpoint of intake was estimated at 15:20±00:36. 184 

Significant weekday and weekend differences were observed for breakfast timing only. The 185 

timing of breakfast was significantly earlier on weekdays (8:33±1:03) compared to weekends 186 

(9:12±1:06) (P=0.001). No significant differences were observed between MZ and DZ twins 187 

for food timing. Furthermore, no differences were observed between the two groups for 188 

anthropometric measures, sleep timing, and chronotype. 189 

 MZ twins showed higher intra-pair correlations than DZ twins for breakfast and lunch 190 

timing, but not for dinner timing. In addition, MZ twins showed higher intra-pair correlations 191 

than DZ twins for wake and bed times and chronotype (Table 2). AE models, where 192 

phenotypic variance is explained by additive genetic and non-shared environmental factors, 193 

showed the best fit in every case. The only exception was for dinner timing, where a CE 194 

model showed a better fit accordingly to the higher DZ correlation compared to MZ (Table 195 

3). 196 

Higher heritability was observed for investigated traits made earlier on in the day 197 

(Figure 1). Indeed, heritability was higher for the timing of breakfast (56%) compared to 198 

lunch (38%), and the timing of dinner was not determined to be heritable. Similarly, the 199 

heritability of wake time was higher (55%) compared to bedtime (38%). Furthermore, we 200 

observed the highest overall heritability for the midpoint of food intake (64%). 201 

Further bivariate analyses for midpoint of food intake and the other timing-related 202 

factors – sleep timing and chronotype – rendered high genetic correlation estimates in the 203 

range of 0.78 and 0.91. Environmental correlations, however, were smaller and non-204 
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significant (Table 4). Hence 85% of the covariance between midpoint of intake and 205 

chronotype could be attributed to common genetic variation. Genetic contribution to 206 

covariance between midpoint of intake and wake and bed time was 90% and 75%, 207 

respectively. 208 

Discussion 209 

The present study provides supporting evidence that the timing of food intake is indeed 210 

heritable, and thus has an underlying genetic component. We observe that the estimated 211 

heritability of food timing varies by meal, and ranges from 56% for breakfast to non-212 

significant heritability for dinner. Heritability estimates are higher for meals earlier on in the 213 

day (breakfast), than later on in the day (lunch and dinner). Similarly, heritability plays a 214 

larger role in other behaviors specific to the morning, such as wake times. Conversely, the 215 

environmental component is larger for the timing of dinner and other evening behaviors, such 216 

as bedtime. This variation in heritability suggests that interventions geared towards 217 

modifying behaviors later on in the day, and those less predetermined by genetics, may be 218 

more successful. Lastly, bivariate analyses for midpoint of food intake and sleep timing and 219 

chronotype suggest shared genetic architecture and likely common biological pathways 220 

underlying those phenotypically related traits. 221 

Our data support the simultaneous interplay between genetic and environmental 222 

factors in contrast to earlier presumptions that the timing of food intake is determined by 223 

cultural factors alone. In twin studies, any learned habit should have an equal effect on MZ 224 

and DZ pairs and as such should have produced a significant effect of common (familial) 225 

environment in the analysis. Because the adult twins participants in the present study live 226 

separately and away from the familial environment, the higher intra-pair correlations found in 227 

MZ siblings suggests that food timing, like food composition [17], is a heritable trait. 228 

Our results show that the timing of intake for breakfast, lunch, and dinner are 229 
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differentially influenced by genetics with higher heritability for meals earlier on in the day, 230 

confirming previous results [25]. Consistent with the timing of meals, we also observe that 231 

other traits related to later on in the day tend to be more driven by environmental factors. 232 

Secular trends from US national surveys indicate shifts in food timing. For example, data 233 

from the National Health and Nutrition Examination Survey analyzing over a 40-year span 234 

from 1971–1974 to 2009–2010 observed later intakes of breakfast, snacks between breakfast 235 

and lunch, lunch, and snacks between lunch and dinner (among men), in addition to earlier 236 

intakes of snacks after dinner in 2009–2010 compared to 1971–1974 [42]. Our heritability 237 

results suggest that intervening for the purpose of advancing late lunch and dinner may be 238 

more achievable than changing breakfast time. Moreover, it is not clearly demonstrated that 239 

breakfast timing may impact health, but rather the prolongation of an overnight fast, which 240 

depends on the timing of both the first and the last meal, may be beneficial [43]. Our previous 241 

study on weight loss showed that a delayed breakfast time was not significantly associated 242 

with lower weight loss effectiveness [6]. Nevertheless, other breakfast habits such as skipping 243 

breakfast [44-46] or a lower energy intake at breakfast relative to at dinner [13, 47] may yield 244 

adverse metabolic consequences. Thus, targeting the timing of breakfast intake might be less 245 

effective than targeting the timing of lunch and dinner for the purpose of achieving overall 246 

health: first because of its genetic influence and, second due to its unclear health benefits. By 247 

contrast, targeting the timing of lunch and dinner may be crucial as the timing of lunch has 248 

been observed to associate with weight loss success [6], and late or night-time eating was 249 

found to be linked to night-time hunger, body image distortions, and mood disorders [48], as 250 

well as elevated fasting blood levels of insulin and glucose that characterize metabolic 251 

syndrome [49]. 252 

In the current work, we aimed to study the relationship between the heritability of the 253 

timing of food intake and other phenotypically related traits, particularly sleep timing and 254 
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chronotype. These traits have been associated with food timing in epidemiological studies [6, 255 

24, 42, 50]. There is also evidence for the heritability of sleep rhythms [51] and chronotype 256 

[52, 53]. Our results confirm the importance of genetic factors for sleep timing phenotypes 257 

and chronotype. We detect moderate heritability for wake and bed times (55% and 38%, 258 

respectively), and for chronotype (43%), corroborating previous studies [52-56]. 259 

Furthermore, when analyzing the genetic and environmental contribution to covariation 260 

between those variables, we find high and significant genetic correlations (.78 to .91) of the 261 

timing of food intake (midpoint) with sleep timing and chronotype. The genetic contribution 262 

to phenotypic correlation was 3-5 fold larger than that of the environment. Such outcome 263 

indicates that it is likely that a common set of genes underlies timing decisions regarding 264 

food intake, sleep timing and chronotype. Thus, future analyses in population-based studies 265 

equipped with genome-wide genetic data are warranted to confirm these genetic correlations. 266 

Our results on the high heritability in food timing may be surprising, considering 267 

anecdotal evidence that food timing is driven primarily by cultural factors. However, studies 268 

performed under laboratory conditions with a protocol that controlled for several behaviors, 269 

including meal content and sleep periods, showed that the internal circadian clock controls 270 

the temporality of hunger and appetite independent of other behaviors [57]. Moreover, a 271 

recent study has demonstrated that adipose tissue specific deletion of BMAL1, a core 272 

molecular clock component, is able to impact the timing of food intake in mice [58]. Both 273 

studies indicate that the temporality of food intake is influenced by the internal circadian 274 

clock.  275 

The present findings on the relative contribution of genetics and environmental factors 276 

to the timing of different meals may have relevance to the prevention and treatment of 277 

metabolic disorders considering the emerging evidence implicating food timing with 278 

metabolic diseases. Later timing of food intake has been associated with: (a) a substantial 279 
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increase in the odds of being overweight/obese [2]; whereas, a later endogenous circadian 280 

timing of food intake, relative to melatonin onset, has been associated with  increased body 281 

fat [3] (b) weight loss impairment during a dietary intervention [6, 47] and following bariatric 282 

surgery [8]; (c) and decreased insulin sensitivity [6, 47]. In addition, a large epidemiological 283 

study performed in 61,364 participants showed that late-night dinner consumption is 284 

associated with hyperglycemia, independent of relevant confounders, including BMI [59].  285 

Some limitations need to be considered when interpreting the results of our study. 286 

Food and sleep timing were self-reported and are prone to measurement error, however these 287 

self-reported measures were previously found to be associated with metabolic diseases and 288 

weight-loss difficulty [6, 8, 9]. Furthermore, timing is a single dimension of diet. Finally, our 289 

study was limited to adult female twin pairs in Spain, and thus findings may not be 290 

generalizable to individuals of different gender, age, and BMI groups. 291 

In conclusion, our data support that genetics may account for a large proportion of the 292 

variation in food timing, particularly for breakfast, whereas the environment appears to be a 293 

more important determinant of lunch and dinner timing. These results suggest that 294 

intervention studies targeting food timing may be most effective if focused on modifiable 295 

factors later on in the day, such as lunch or dinner, rather than breakfast. In addition, future 296 

efforts should attempt to unravel specific genetic variants associated with food timing and 297 

disclose the shared genetic architecture underlying food timing and phenotypically related 298 

traits. 299 
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Tables 

Table 1. General characteristics of 53 twin pairs. 
 

 Monozygotic  
(n =56) 

Dizygotic  
(n =50) 

p 
values 

Age (years) 51±6 53±6 0.066 

Weight (kg) 64.12±8.56 63.44±7.91 0.370 

Height (cm) 156.43±6.84 157.52±5.61 0.369 

BMI (kg/m) 26.30±3.89 25.66±3.65 0.404 

Body fat (%) 32.99±5.89 32.96±6.72 0.979 

Waist (cm) 90.56±8.76 90.08±10.66 0.805 

Hip (cm) 103.68±7.15 102.39±8.10 0.379 

WHR 1.15±0.06 1.14±0.09 0.742 

Timing of food intake    

Breakfast 08:49±00:54 08:36±00:52 0.209 

Lunch 14:31±00:33 14:32±00:30 0.904 

Dinner 21:36±00:40 21:22±00:41 0.072 

Midpoint of intake 15:16±00:32 15:23±00:40 0.335 

Sleep    

Wake-time (hh:mm) 07:33±01:09 07:38±01:00 0.684 

Bed-time (hh:mm) 24:18±00:56 24:28±00:59 0.288 

Chronotype score 55.21±8.67 56.44±7.56 0.442 

Data are represented as means ± SD. 
Abbreviations: BMI, body mass index, WHR, waist-to-hip ratio  
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Table 2. Twin intra-pair correlations with 95% CI for timing of food intake and related traits 

 
Intra-pair correlation coefficients 

  
r MZ 

(CI 95%) 
r DZ 

(CI 95%) 

Food intake timing   

Breakfast timing 
0.56  

(0.26, 0.74) 
0.29 

(-0.12, 0.59) 

Lunch timing 
0.40 

(0.06, 0.63) 
0.15  

(-0.26, 0.50) 

Dinner timing 
0.36  

(-0.03, 0.63) 
0.42 

(0.08, 0.66) 

Midpoint of food intake 
0.64  

(0.39, 0.79) 
0.438  

(-0.16, 0.61) 

Sleep and wake timing   

Wake timing 
0.54  

(0.26, 0.73) 
0.37  

(-0.06, 0.65) 

Bed timing 
0.42  

(0.10, 0.65) 
0.02  

(-0.36, 0.40) 

Chronotype (MEQ) 
0.42  

(0.11, 0.64) 
0.23  

(-0.22, 0.57) 

r MZ: monozygotic intra-pair correlation coefficient, r DZ: dizygotic intra-pair correlation 
coefficient, CI (95%): confidence interval, MEQ; Morning-Evening Questionnaire. 
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Table 3.  
Model-fitting results for univariate models, and proportions of variance (parameter estimates) explained by additive genetic influences (A), shared-
environmental (C) and residual variation (E) with 95% confidence intervals (CI). 

Goodness-of-fit index Parameter estimates (CI = 95%) 
 Model -2LL df AIC ∆X2 ∆df p A C/D E 
Breakfast timing ACE 258.11 101 56.11 -   0.53 (0, 0.74) 0.02 (0, 0.59) 0.45 (0.26, 0.74) 

AE 258.12 102 54.12 0.003 1 .954 0.56 (0.28, 0.74) -- 0.44 (0.26, 0.72) 
CE 259.78 102 55.78 1.67 1 .196   1  
E 271.01 103 65.01 12.89 1 < .001   1  

Lunch timing ADE 155.69 101 −46.31    0.21 (0, 0.62) 0.19 (0, 0.63) 0.60 (0.37, 0.92) 
AE 155.74 102 −48.26 0.05 1 .830 0.38 (0.07, 0.62) -- 0.62 (0.38, 0.93) 
E 161.46 103 −44.54 5.72 1 .017   1 

Dinner timing ACE 205.29 101 3.29 -   0 (0, 0.60) 0.39 (0, 0.60) 0.61 (0.37, 0.86) 
AE 206.97 102 2.97 1.68 1 .195 1   
CE 205.29 102 1.29 < 0.01 1 1 -- 0.39 (0.14, 0.59) 0.61 (0.40, 0.86) 
E 214.17 103 8.17 8.88 1 .003   1  

Midpoint of food 
intake 

ADE 168.56 101 −33.44    0.57 (0, 0.79) 0.07 (0, 0.85) 0.36 (0.21, 0.60) 
AE 168.57 102 −35.43 0.008 1 .930 0.64 (0.40, 0.79) -- 0.36 (0.21, 0.60) 
E 187.79 103 −18.21 19.225 1 <.0001 - - 1 

Wake timing ACE 299.92 101 97.92 -   0.34 (0, 0.72) 0.20 (0, 0.64) 0.46 (0.27, 0.73) 
AE 300.17 102 96.17 0.25 1 .618 0.55 (0.29, 0.73) -- 0.45 (0.27, 0.70) 
CE 300.64 102 96.64 0.72 1 .395   1  
E 314.24 103 108.24 14.08 1 < .001   1  

Bed timing ADE 287.83 101 85.83    0 (0, 0.61) 0.42 (0, 0.65) 0.58 (0.35, 0.91) 
AE 288.44 102 84.44 0.61 1 .436 0.38 (0.06, 0.63) -- 0.62  (0.37, 0.94) 
E 293.80 103 87.80 5.36 1 .021   1 

Chronotype ACE 729.27 101 527.27 -   0.38 (0, 0.64) 0.04 (0, 0.55) 0.58 (0.35, 0.88) 
AE 729.28 102 525.28 0.01 1 .922 0.43 (0.13, 0.64) -- 0.57 (0.35, 0.86) 
CE 729.90 102 525.90 0.62 1 .430   1  
E 736.99 103 530.99 7.09 1 .008   1  

-2LL: twice negative log-likelihood; df: degrees of freedom; AIC: Akaike Information Criterion; ∆X2: difference in X2 to full model; ∆df: difference in 
degrees of freedom to full model. Bold values indicate best fitting model.
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Table 4. Phenotypic (rP), genetic (rG), and unique environmental (rE) correlations from 
bivariate AE models for midpoint food intake and circadian-timing related traits. 
 

 
Midpoint of food intake 

 
rP 

(CI 95%) 
rG 

(CI 95%) 
rE 

(CI 95%) 

Sleep and wake 
timing 

  
 

Wake timing 0.56 (0.40, 0.69) 0.79 (0.53, 1.00) 0.15 (−0.17, 0.45) 

Bed timing 0.53 (0.37, 0.66) 0.78 (0.41, 1.00) 0.28 (−0.55, 0.56) 

Chronotype (MEQ) −0.45 (−0.60, −0.27) −0.91 (−1.00, −0.60) 0.23 (−0.10, 0.49) 

MEQ: Morning-Evening Questionnaire  
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Figure legend 

Figure 1. Broad heritability and environmental effect estimates for food timing and related 
variables analyzed. The rectangles represent the contribution (percentage) of heritability (A: 
additive genetic factor + D: non-additive genetic factors) in black and non-shared 
environmental factors (E) in grey of the different variables. The asterisk represents the share 
environmental factors (C) in diagonals lines. 
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Highlights 
 
� Food timing is a novel dimension in nutrition science. Indeed, the timing of food 
intake is newly proposed as a modifiable risk factor for weight management and chronic 
disease prevention. 
� The present study provides supporting evidence that the timing of food intake has an 
underlying genetic component.  
� Similarly, heritability plays a larger role in other behaviors specific to the morning, 
such as wake times. Conversely, the environmental component is larger for the timing 
of dinner and other evening behaviors, such as bedtime. 
� The present findings on the relative contribution of genetics and environmental 
factors to the timing of different meals may have relevance to the prevention and 
treatment of metabolic disorders considering the emerging evidence indicating the 
importance of food timing in metabolic health and disease. 
�These results suggest that intervention studies targeting food timing may be most 
effective if focused on modifiable factors later on in the day, such as lunch or dinner, 
rather than breakfast. 
 


