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Highlights 

- PBDEs are persistent pollutants that bioaccumulate in the marine environment. 

- Rising concentrations of PBDEs affected SAF-1 vitality while induced ROS production. 

- PBDES via oxidative stress affected the cell cycle and energetic balance pathways. 

- Long term exposure to sub-lethal concentrations of PBDEs may lead cells transformation. 

 

Abstract 

Polybrominated diphenyl ethers (PBDEs) are a class of persistent contaminants which are found all 

over the world in the marine environment. Sparus aurata fibroblast cell line (SAF-1) was exposed 

to increasing concentrations of PBDEs 47 and 99, until 72 hours to evaluate the cytotoxicity, 

reactive oxygen species (ROS) production and the expression of some selected molecular markers 

related to cell cycle, cell signaling, energetic balance and oxidative stress (p53, erk-1, hif-1α and 

nrf-2),  by real-time PCR. Furthermore, SAF-1 cells were exposed for 7 and 15 days to sub-lethal 

concentrations, in order to evaluate the response of some biomarkers by immunoblotting (p53, 
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ERK-1, AMPK, HIF-1α and NRF-2). After 48 and 72 hours, the cells showed a significant decrease 

of cell vitality as well as an increase of intracellular ROS production. Gene expression analysis 

showed that sub-lethal concentrations of BDE-99 and 47, after 72 hours, up-regulated cell cycle and 

oxidative stress biomarkers, although exposure to 100µmol L-1 down-regulated the selected markers 

related to cell cycle, cell signaling, energetic balance. After 7 and 15 days of sub-lethal doses 

exposure, all the analyzed markers resulted affected by the contaminants. Our results suggest that 

PBDEs influence the cells homeostasis first of all via oxidative stress, reducing the cell response 

and defense capacity and affecting its energetic levels. This situation of stress and energy imbalance 

could represents a condition that, modifying some of the analyzed biochemical pathways, would 

predispose to cellular transformation. 

 

 

Abbreviations 

 

AREs: Antioxidant response elements 

AMPK: Adenosine 5′-monophosphate-activated protein kinase 

CYP: Cytochrome P450 

ERK-1: Extracellular signal–regulated kinase 1 

HIF-1: Hypoxia inducible factor 1 

NRF-2: Nuclear factor (erythroid-derived 2)-like 2 

PBDEs: Polybrominated diphenyl ethers  

ROS: Reactive oxygen species 

 

Keywords: PBDEs,  oxidative stress,  energetic balance,  cell cycle, Sparus aurata fibroblast. 
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1. Introduction 

Polybrominated diphenyl ethers (PBDEs) are a group of chemical compounds that are used in 

synthetic polymers and plastics with the aim of diminishing the flammability of combustible 

materials (Reynier et al., 2001; Teuten et al., 2009). These organobromide compounds are designed 

to be very stable for many years, which means they are able to remain in the environment for a 

considerable time (Eljarrat and Barceló, 2011). Many studies on PBDEs have shown that these 

compounds are ubiquitous, toxic, persistent and bioaccumulated in the environment (Boer et al., 

2001; Hong et al., 2010; Horri et al., 2018; Hu et al., 2010; Kierkegaard et al., 2004; Kim and 

Stapleton, 2010; Oberg et al., 2002; Sellstrom and B. Jansson, 1995; Sjödin et al., 2001; Zhu and 

Hites, 2006). Unfortunately, they accumulate also in aquatic environments by different ways, and 

the 2, 2′, 4, 4′-tetrabromodiphenyl ether (BDE-47) and the 2, 2′, 4, 4′, 5-pentabromodiphenyl ether 

(BDE-99) are among  the most abundant found in this ambience (Bi et al., 2007; Leung et al., 

2006). Because of these properties, some flame retardants have been prohibited in the USA and 

European Union (ATSDR, 2004; Directive 76/769/EEC., 1986; Off. J. Eur. Union, 2003; World 

Health Organization, 2003). 

In the organism, PBDEs may be metabolized to more polar compounds, such as hydroxylated, 

methoxylated and/or conjugated metabolites (OH-, MeO- and GS-PBDEs), via phase I and phase II 

metabolic enzymes, in order to be eliminated via urines or bile, as demonstrated in exposed mice 

and rats (Malmberg et al., 2005; Qiu et al., 2007). The enzymes of the phase I, II, and III of the 

xenobiotic metabolism, play a fundamental roles in biotransformation and elimination of PBDEs, 

although cytochrome P450 enzymes (CYPs) (as CYP1A2, CYP3A4 and CYP2B) have been 

suggested  to display a relevant role (Stapleton et al., 2009; Szabo et al., 2009). However, the 

products of PBDEs metabolytes (such as hydroxylated BDE congeners (OH-BDE)) have been 

demonstrated to produce greater toxicity than the parent BDE congeners in laboratory bioassays 

(Roberts et al., 2011; Stapleton et al., 2009, 2004). Several studies have been described PBDEs acts 
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as endocrine disruptors, the thyroid system being their main target (Legler, 2008; Yu et al., 2015). 

Furthermore, some PBDEs have been shown to interfere with the reproductive function both in 

human (Abdelouahab et al., 2011; Main et al., 2007; McDonald, 2005) and laboratory/wild animals 

(Gilchrist et al., 2014; Kuriyama et al., 2004; Stoker et al., 2004). Among these organisms, teleost 

have been attracted much attention, as they may be exposed to waterborne contaminants during a 

part or all their life span (Carr and Patiño, 2011). In fact, it has been proposed that xenobiotics have 

contributed to the decline of some wild marine fish populations (Hamilton et al., 2016) and the 

productivity of some marine fish stocks, due to the nursery habitat degradation in relation to 

pollutant accumulation (Gilliers et al., 2003; Riou et al., 2001; Rochette et al., 2010). However, it is 

difficult to determine in wild orgnisms the relationship between one class of compound and its 

effects on organism,   due to the presence of multiple stresses in natural environments, which can 

include also many  chemicals (Baillon et al., 2016). On the contrary, the experimental approach 

allows to control most of the parameters, avoiding for potential crosstalks and/or interferences. The 

effects and the underlying mechanisms of action of PBDEs at the individual level have thus been 

intensively studied through experimental exposure, notably in fish. These studies have 

demonstrated an alteration of behavior, growth, reproductive, hepatic, and renal functions as well as 

of the immune and the endocrine systems in fish (Berg et al., 2011; Daouk et al., 2011; Han et al., 

2013, 2011; Lyche et al., 2011; Péan et al., 2013; Yu et al., 2015). As for others contaminants or 

xenobiotics, the use of cell lines to analyze the toxicity of aquatic pollutants, including PBDEs, is a 

consistent alternative to in vivo trials with fish and have contributed to  significant advance in our 

knowledge of the toxicology and its mechanisms (Morcillo et al., 2015). 

Several in vitro studies reported different alteration at molecular level produced by PBDEs 

exposure, as the induction of thyroxine-like and estrogen-like activities in Wistar WU rats 

microsomes (Meerts et al., 2000), as well as the increase of cell proliferation, micronucleus 

formation (Barber et al., 2006; Llabjani et al., 2010; Ukpebor et al., 2011) and CYP1A1 activation 
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in human MCF-7 breast cancer cells (Mercado-Feliciano and Bigsby, 2008). The induction of 

proliferation by PBDEs has been described also on human cancer cells from the female 

reproductive system (OVCAR-3) and normal ovarian CHO cells (Chinese hamster ovary cells) 

mediated via phosphorylation of PKCα and ERK-1/2 proteins (Li et al., 2012). Cell cycle disruption 

was described in Neuro-2a cells from mouse, in which PBDEs produced an increase of p53 and p21 

expression (Chen et al., 2017a). A significant reduction of vitality, ROS production and cell cycle 

arrest were reported in spermatocytes from mouse (Huang et al., 2016). Moreover, cytotoxic effects, 

alteration of cell cycle and DNA damage were showed in a cell line of hepatocytes from human 

(HepG2) treated with PBDEs (An et al., 2011). 

Although PBDEs have been suggested to affect the cell cycle, reducing the vitality and modifying 

the regulation of some cell cycle factors, the mechanisms involved in this process remain still 

unclear even if the promotion of oxidative stress is recognized as a relevant factor. Oxidative stress 

has been suggested as a relevant factor in cells exposed to PBDEs. In fact, it has been described in 

vitro the decrease of vitality together with an elevation of reactive oxygen species (ROS) in HepG2 

(An et al., 2011; Hu et al., 2007), and the induction of NRF-2 pathway in Neuro-2a cells (Chen et 

al., 2017b), modulation of others molecular markers related to cell cycle, oxidative stress and 

energy management (Manuguerra et al., 2019) . However, others mechanisms could be implicated 

on disturbance of cell homeostasis by PBDEs, as the increase of ATP, or mitochondrial signaling 

pathway (Chen et al., 2017b; Huang et al., 2016). 

Only few papers have evaluated the effect of PBDE in marine fish cell lines (Browne et al., 2009; 

Yang and Chan, 2015, Espinosa et al., 2019). With the aim to bring some light into this field, we 

evaluated the effect of PBDEs using Sparus aurata fibroblast cell line (SAF-1), previously used to 

assess the mechanisms of action of others contaminants (Morcillo et al., 2016). 

Our study focused on some aspects of the cellular response to PBDEs, such as cell cycle and 
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proliferation, energetic balance and oxidative stress production at short and long time of exposure, 

by studying some representative molecular markers of each event. Among these: the ROS 

production, in order to assess if our experimental system is susceptible to oxidative stress 

determined by PBDE; the protein p53, involved in the perception of a risk for the DNA integrity 

and in the management of a complex of enzymatic responses aimed at promoting cell cycle arrest 

for DNA repair or cell death via apoptosis; the protein ERK-1, a kinase involved on cell 

proliferation through a complex MAP kinase signaling pathways;  the HIF-1 protein, regulated by 

oxygen availability and in relation to that, able to modulate the metabolic pathway, ATP production 

and angiogenesis; the protein AMPK, which is a sensor of AMP/ATP ratio; NRF-2, considered as 

an oxidative stress sensor which activates the antioxidant and detoxifying response.  
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2. Material and methods 

2.1 SAF-1 cell culture 

The established cell line SAF-1 (ECACC n°00122301) was seeded in 25cm2 plastic tissue culture 

flasks (Nunc, Germany) cultured in L-15 Leibowitz medium (Sigma, UK), supplemented with 10% 

fetal bovine serum (FBS, Sigma, UK), 2mmol L-1 L-glutamine (Sigma, UK), 100i.u. mL-1 penicillin 

(Sigma, UK) and 100g L-1 streptomycin (Sigma, UK). Cells were grown at 25°C under humidified 

atmosphere (85% humidity). Exponentially growing cells were detached from culture flasks by 

brief exposure to 0.25% of trypsin in PBS, pH 7.2-7.4, according to the standard trypsinization 

methods. The detached cells were collected by centrifugation (1000 rpm, 5min, 25°C) and the cell 

vitality was determined by the trypan blue exclusion test. 

2.2 Cytotoxicity assay  

Cytotoxicity assay was performed in five replicates. When SAF-1 cell lines were approximately 

80% confluent, they were detached from flasks culture with trypsin (as described before), and 

aliquots of 100mL containing 10000 cells well-1 were dispensed in 96-well tissue culture plates and 

incubated (24h, 25°C). This cell concentration was previously determined in order to obtain 

satisfactory absorbance values in the cytotoxic assay and avoid cell over-growth. After that, the 

culture medium was replaced by 100mL well-1 of the PBDEs to be tested at the appropriate dilution. 

The PBDE standards were provided by SPECTRA (Rome, Italy); stock solution of BDE-47 and 99 

at a concentration of 25mmol L-1 were prepared by dissolving the powder compounds in dimethyl-

sulfoxide DMSO. Tested concentrations of BDE-47 and 99 ranged from 1 to 100µmol L-1 (1, 10, 

50, 75, 100). Cells were then incubated for 24, 48 and 72h in three different plates at 25°C. Control 

samples received the same volume of culture medium and DMSO 0.1%, although the absence of the 
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effects of the vehicle is well known (Abbes et al., 2013; Messina et al., 2016). After 24, 48 and 72h 

at 25°C, the vitality was determined using the MTT assay. 

The MTT assay is based on the reduction of the yellow soluble tetrazolium salt (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT, Sigma-Aldrich, Saint Louis, USA) 

into a blue, insoluble formazan produced by the mitochondrial succinate dehydrogenase (Berridge 

and Tan, 1993; Denizot and Lang, 1986). After incubation with the PBDEs, SAF-1 cells were 

washed with phosphate buffer saline solution (PBS) and 200mL well-1 of MTT (1g L-1) were added. 

After 4h of incubation, cells were washed again and the formazan crystals solubilized with 100mL 

well-1 of DMSO. Plates were shacked (5min, 100rpm) in dark conditions and the absorbance at 

570nm and 690nm were determined in a microplate reader (Opsys MR™ Microplate Reader, USA). 

After the determination of the sub-lethal concentrations for each compound, the next experiments 

were done in order to assess molecular markers related to the different biochemical patterns. 

2.3. Evaluation of intracellular ROS 

SAF-1 cells were incubated with different concentration of BDE 47 and 99, as described above. 

After 72h of treatment, intracellular ROS were analyzed on cell seeded in 96 microplate, by the 

dichlorodihydrofluorescein-diacetate (DCF-DA) method (Kang et al., 2005) with some 

modifications (Messina et al., 2016). DCF-DA is oxidized to dichlorodihydrofluorescein (DCF) by 

ROS. Each well was exposed to 10 µL of DCF-DA in HBSS (5mg L-1), incubated for 5 minutes at 

37ºC to allow the oxidation of the DCF-DA and successively read on a spectrofluorometer 485exc - 

530em (Varian Cary Eclipse, Mulgrave, Victoria, Australia). The results have been expressed as 

relative fluorescence/µg of total proteins (rf µg tp-1). 

2.4.1 Gene expression assay in cells exposed to increased concentration of PBDE for 72 hours. 
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SAF-1 cells (500.000 cells/well) were incubated in 12 well plates (Nunc, Germany) for 72 hours 

with different concentrations of PBDEs (vehicle (control), sub-lethal doses of BDE-99 and 47 

(1µmol L-1) and the highest dose of BDE-99 and 47 (100µmol L-1). The highest concentration was 

selected as it was responsible of the highest cell mortality at 72 hours (67.4±4.6 for BDE-47 and 

68.9±4.5 for BDE-99 respectively). Each concentration was tested in four different wells (500.000 

cells/well). Then, medium was removed, cells were washed using PBS and 1mL of PUREzol (Bio-

Rad, USA) was added to the flask. The PUREzol containing the RNA from cells was obtained and 

stored at -80ºC prior to analyses. 

2.4.2 Quantitative real-time PCR 

Total cellular RNA was isolated from the samples in PUREzol using Aurum Total RNA Fatty and 

Fibrous Tissue Kit (Bio-Rad, USA), and the concentration was assessed spectrophotometrically at 

260 nm. The absorbance ratios A260/A280 and A260/A230 were evaluated as indicators of the 

RNA purity. Then, 1µg of RNA were reverse-transcribed for each sample, in a volume of 20µL, by 

the 5X iScript Reaction Mix Kit (Bio-Rad, USA) according to manufacturer’s instructions. The 

amplification was performed in a total volume of 20µL, which contained: 0.4µmol L-1 of each 

primer, cDNA diluted 1:10 of the final reaction volume, 1X IQ SYBR Green Supermix (Bio-Rad, 

USA) and nuclease-free water. Conditions for real-time PCRs were optimized in a gradient cycler 

(C1000 Touch Thermal Cycler, Bio-Rad, USA) using the following run protocol: an initial 

activation step at 95°C for 3min, followed by 39 cycles of 95°C for 10s and 60°C for 30s, with a 

single fluorescence measurement. Melting curve program was achieved at 65-95°C with heating 

rate of 0.5°C/cycle and a continuous fluorescence measurement. All reactions were performed in 

triplicate. For each PCR, we checked linear range of a standard curve of serial dilutions. The 

relative quantification of [p53, erk-1, hif-1 and nrf-2] gene expression was evaluated after 

normalization with the reference genes. Data processing and statistical analyses were performed 

using CFX Manager Software (Bio-Rad, USA). The primers used are shown in Table 1. The 
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relative expression of all genes was calculated by the 2-CT method (Livak and Schmittgen, 2001), 

using Sparus aurata β-actin and 18S as the endogenous reference. 

2.5.1 Evaluation of molecular markers by immunoblotting in cells exposed to sub-lethal 

concentrations of PBDE for 15 days 

For the evaluation of molecular markers related to the different pathways of oxidative stress, cell 

cycle progression, apoptosis and energy balance managements, a long term experiment, lasting 15 

days, was carried out in flask, for each compounds, at only one sub-lethal concentration (1µmol L-

1). SAF-1 cells (40,000cells cm-2) were incubated in a 25cm2 flask (Nunc, Germany) and exposed to 

BDE-99, BDE 47 at 1µmol L-1, plus a Mix of the two compounds at the same concentration (each 

compound at 1µmol L-1). The compounds were added in the culture medium each time that this was 

renewed. The sampling for proteins evaluation by immunoblotting was done after 7 and 15 days. 

For each compound and each sampling time two replicates were performed. After the treatment, the 

cells were recovered by tripsinization and centrifugation, as previously described, incubated 30 min 

on ice in lysis buffer (1:4) (1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, cocktail of protease 

inhibitors) and sonicated. Proteins concentration was measured in total lysate, according to the 

method described by Lowry (Lowry et al., 1951). Experiments were carried out in duplicate. 

2.5.2 Immunoblotting 

Equivalent amounts of proteins (20μg) were loaded on pre-cast gel for SDS–polyacrylamide 

electrophoresis (SDS-PAGE), (Bio-Rad, Hercules, CA, USA) and blotted using a Trans Blot Turbo 

Transfer System (Bio-Rad, Hercules, CA, USA). The correct amount of protein loading was 

confirmed by red Ponceau staining. Filters were used for protein detection by primary antibodies 

(AbI) specifics for p53 (Ab monoclonal from mouse), for total Extracellular signal-regulated kinase 

1 (ERK-1) (Ab monoclonal from rabbit), phospho-AMP-activated protein kinase alpha (AMPK α) 

(Ab polyclonal from rabbit), hypoxia-inducible factor 1-alpha (HIF-1α) (Ab monoclonal from 
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mouse) and Nuclear factor (erythroid-derived 2)-like 2 (NRF-2) (Ab monoclonal from mouse) 

(Sigma-Aldrich, Dorset, UK; Santa Cruz, CA, USA). In relation to the origin of the AbI, the 

appropriate secondary antibodies were used (anti mouse or anti-rabbit, anti-goat secondary antibody 

conjugated with horseradish peroxidase (GAR/M-HRP Bio-Rad, Hercules, CA, USA). The signals 

originated by immunoreaction were detected using enhanced chemo-luminescent (ECL) reagents 

(Bio-Rad). Images were obtained, photographed and digitalized with Chemi Doc XRS (Bio-Rad, 

Hercules, CA, USA), and further analyzed with Image Lab software (Bio-Rad, Hercules, CA, 

USA). The results were expressed as fold increase of each treatment in relation to the respective 

control, representing the mean value of three separate experiments. 

2.6 Statistical analysis 

Statistical differences among the groups were assessed by one-way ANOVA analyses, followed by 

the Bonferroni or Games Howell test, depending on the homogeneity of the variables. The 

normality of the variables was confirmed by the Shapiro–Wilk test and homogeneity of variance by 

the Levene test. The significance level was 95% in all cases (P < 0.05). All the data were analyzed 

by the computer application SPSS for Windows® (version 20.0, SPSS Inc., Chicago, USA).  
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3. Results 

3.1 Cytotoxicity assay 

The effects of BDE 47 and 99 on vitality and cytotoxicity of SAF-1 cells were evaluated by MTTs. 

Results from the cytotoxicity test showed that incubation of SAF-1 cells with BDE 47 and 99 

significantly affected their vitality (P<0.05), indeed showing high levels of cytotoxicity at the 

higher concentration tested (50 and 100µmol L-1 at 48-72 hours of BDE-47 and BDE-99) (Figure 1a 

and b, respectively).  

3.2 Evaluation of intracellular ROS 

In this study BDE 47 and 99 were also tested for their effects on intracellular ROS production in 

SAF-1 cells. While lower concentrations of compounds did not determine a significant increase in 

ROS, the exposure to 100µmol L-1 of BDE 47 and BDE 99, after 72 hours of incubation, 

significantly increased the intracellular ROS production in SAF-1, with respect to control samples 

(P<0.05) (Figure 1c and d, respectively). 

3.3 Evaluation of molecular markers by gene expression and immunoblotting 

The expression of some genes related to cell cycle (p53), cell proliferation (erk-1), energetic 

balance (hif-1) and oxidative stress (nrf-2) were evaluated in cells exposed for 72 hours to two 

doses of BDE-99 and 47 (1µmol L-1 and 100µmol L-1 (Figure 2). p53 expression was significantly 

up-regulated by the exposure to sub-lethal concentrations (1µmol L-1) of BDE-99 and 47 while was 

down-regulated after the exposure to 100 µmol L-1 of BDE-47 after 72 hours (P<0.05).  By contrast, 

the highest dose of BDE-99 did not affect the expression of p53 (Figure 2). erk-1 expression was 

significantly down-regulated by the exposure to 100µmol L-1 of both PBDEs (P<0.05) at 72 hours. 

The expression of hif-1 was significantly decreased by the exposure to the highest dose of both 

compounds at 72 hours (P<0.05) (Figure 2). Finally, nrf-2 expression was significantly up-regulated 
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by the exposure to sub-lethal concentrations (P<0.05), although highest concentrations of both 

compounds did not affect the oxidative stress marker (Figure 2). 

Most of the proteins previously analyzed by gene expression, were studied by immunoblotting, in 

SAF-1 cell treated for 15 days with one sub-lethal dose of each compound (1µmol L-1), plus a mix 

of the two at the same concentration; the results are showed in Figure 3. 

Regarding the p53, it was observed a significant reduction of the protein levels in SAF-1 cells 

treated with the mix and with BDE-99 at 7 days, vs the control (P<0.05) (Figure 3). 

The marker of cell proliferation, ERK-1, resulted decreased in almost all PBDEs treatments, after 7 

and 15 days, respect to the control (Figure 3) (P<0.05).  

The selected markers related to the energetic balance (AMPK and HIF-1α) were affected by the 

PBDEs treatment, respect to the control (Figure 3). The levels of the AMPK protein significantly 

decreased in cells treated with BDE 47 and Mix (P<0.05) and the decrease was more pronounced 

for   HIF-1α in cells treated with all compounds (P<0.05). 

Finally, the marker related to oxidative stress, the NRF-2, resulted significantly increased in all 

exposed cells, respect to the control (P<0.05 (Figure 3).  
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4. Discussion 

4.1 Effects of PBDEs on cytotoxicity and ROS production  

The objective of this study was to use the SAF-1 cell line as in vitro model to investigate the 

molecular mechanisms involved on cell cycle, energetic metabolism and oxidative stress produced 

by BDE-47 and 99, which are the most abundant PBDEs in the environment and wildlife (Bi et al., 

2007; Leung et al., 2006; Yang et al., 2016). The cytotoxic effects of PBDEs exposure at short time 

and ROS production, along with the gene expression of some markers were evaluated on the SAF-1 

cell line. Furthermore, the effect of PBDEs exposure at middle/long time at sub-lethal doses on the 

protein profile involved on cell cycle, cell metabolism and oxidative stress were studied. 

Our findings showed that PBDEs exposure affected the cell vitality in a time-dose dependent 

manner (Figure 1a-c). In our study, BDE-47 and 99 significantly decreased the cell vitality of SAF-

1 above a threshold concentration (50μmol L-1) after 48 and 72 hours of exposure. These 

observations agrees with other works developed in vitro, which reported that BDE-47 significantly 

affected to HepG2 cell proliferation (An et al., 2011; L. Wang et al., 2012) or works that showed 

that BDE-99 produced a significant inhibition of Neuro-2 cells (Chen et al., 2017a; Slotkin et al., 

2017). 

Additionally, intracellular ROS production was increased in a dose-response manner after PBDEs 

incubation (Fig. 1d-f). Others in vitro studies reported a similar relationship between PBDEs and 

ROS production. For example, ROS production, as well a decrease of vitality, were evidenced in 

HepG2 cells treated with PBDEs (An et al., 2011; Hu et al., 2007). Another study showed a 

significant induction of NRF-2 and its antioxidant pathway on Neuro-2a cells after BDE-47 

exposure (Chen et al., 2017b). In addition to in vitro studies, in vivo experiment on mouse treated 

with  BDE-209 showed increased lipid peroxidation on germ cell as well as decreased the levels of 

CAT and SOD (Sarkar and Singh, 2017). In all, we showed that PBDEs exposure determined   

ACCEPTED M
ANUSCRIP

T

http://code-industry.net/


16 
 

cytotoxicity and a significant increase of oxidative stress on SAF-1 cells. Similar results on toxicity 

and ROS production were obtained in our recent work on the same cell line exposed to BDE-209 

(Espinosa et al., 2019) and in human fibroblast cell line exposed to BDE-47, 99 and 209 

(Manuguerra et al., 2019). 

4.2 Effects of PBDEs on molecular markers related to cell cycle, energetic balance, oxidative stress 

and proliferation 

Under a stress situation, the protein p53, designed as “the genome guardian”, contributes to regulate 

the cell cycle through  the control of the cell cycle arrest (by activation of  cyclins and 

retinoblastoma protein which entail cell cycle interruption) or addressing cell death (Yee and 

Vousden, 2005; Zhang et al., 2015). Our results showed that p53 gene resulted up-regulated after 

short time exposure to sub-lethal concentrations of BDE-47 and 99 and down-regulated in cell 

exposed to the highest concentrations (figure 2); the protein seems to be still active in cells exposed 

to the sub-lethal doses for longer time, except than in cells exposed to the mix of PBDEs, in which 

its levels resulted dramatically reduced (P< 0.05) (figure 3).  Other studies reported an increase of 

the p53 levels after PBDEs exposure, such as in human fibroblast (Manuguerra et al., 2019), in 

Neuro-2a cells, in mouse spermatocytes and HepG2 cells (Chen et al., 2017a; Huang et al., 2016; 

An et al., 2011), as well as in the studies done on zebrafish embryos (Lyche et al., 2016) and in 

human SH-SY5Y cells (Zhang et al., 2013). In all these studies both time and doses of exposure 

were different and this aspect render complicate the comparison with our results, also because of the 

complexity of these pathways. Nevertheless, the decrease of the p53 expression observed in our 

experiment could indicate the possibility that the cell lost one of its most important protective 

factor, blocking the DNA reparation. A similar results was observed in SAF-1 cells exposed to 

BDE-209 (Espinosa et al, 2019). This situation might increase the susceptibility to mutagenesis and 

cell cycle transformation,  that, in fact, have been reported for PBDEs (Espinosa et al 2019; Chen et 

al., 2017a; Li et al., 2012). 
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ERK-1 is a kinase mainly implicated in cell activation, modulating cell proliferation (McCubrey et 

al., 2007a, 2007b; Turpaev, 2006).  In our study, both the gene expression as well as the levels of 

ERK-1 protein, resulted depresses after PBDE exposure (figure 2 and 3). These results are 

consistent with our recent results obtained in the same cell line exposed to BDE-209 (Espinosa et 

al., 2019), but in contrast with others studies that described an increase of ERK1/2 levels after 

PBDEs exposure in human fibroblast cells (Manuguerra et al., 2019), in human OVCAR-3 cells 

(Karpeta et al., 2016), in cerebellar granule neurons from Long–Evans rat (Fan et al., 2010), or in 

human HeLa cells (Li et al., 2012), although different doses and time of exposition were used. It 

was reported that other contaminants, such as  1,2-dichloroethane, can induce toxicity and apoptosis 

via ERK1 downregulation in HepG2 human cells (Pang et al., 2018). As ERK1/2 activation plays a 

protective role against oxidative stress and others cell insults, the inhibition of ERK1/2 pathway 

could result in a loss of protection from cells  (Koinzer et al., 2014), suggesting that the inhibition 

of ERK1 observed in SAF-1, after PBDEs exposure, may exacerbate the negative effects of the 

contaminant. However, further research is needed to clarify this issue. 

AMPK is an enzymatic complex activated by the increase of AMP/ATP ratio, being considered as a 

sensor of the cell energy levels (Shen et al., 2010). In our long term experiment, the levels of the 

AMPK protein resulted significantly decreased in cells treated with BDE-47 and Mix (figure 3), 

which is consistent with our recent results obtained in the same cell line exposed to PBDE-209 

(Espinosa et al., 2019), and in human fibroblasts exposed to BDE-47, BDE-99 and BDE-209 

(Manuguerra et al., 2019). However, our results contrast with those reported by others authors who  

showed that BDE-47 and BDE-99 exposure decreased ATP levels on insolated mitochondria from 

rat liver (Pazin et al., 2015), determining an AMPK increase (Shen et al., 2010). In fact, low levels 

of AMPK could be related to metabolic changes (anaerobic conditions) that has been described on 

cancer genesis (Sciacovelli et al., 2014) and different types of cancer (Li et al., 2015). As AMPK 

activation may regulate energy levels, enforcing metabolic checkpoints and inhibiting cell growth, 
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this protein is often considered as a tumor suppressor (Li et al., 2015). In this situation, the low 

levels of AMPK observed in our experiment could represent an early warning marker, that could 

lead to cancer promotion. However, the mechanisms need to be further evaluated. 

The hypoxia inducible factor 1 (HIF-1) is considered the master transcriptional regulator of cellular 

responses to hypoxia due to its sensibility to the oxygen availability inside the cell (Kitajima et al., 

2017; Qi et al., 2014). In relation to this condition, HIF-1 regulates the molecular processes that 

maintain the oxygen homeostasis, adapting  the related metabolic pathways (Romney et al., 2011; 

Shao et al., 2010; Zhang et al., 2009). In view of these properties, HIF-1 activates the transcription 

of genes involved in cancer genesis, including angiogenesis, anaerobic glycolysis, cell survival and 

invasion (Lin et al, 2014). 

From structural point of view, HIF is a heterodimer composed by α and β subunits, that are 

differently active in relation to the oxygen availability: in normoxia, HIF 1-α is degraded by 

proteasome and its activity is inhibited. In hypoxia, HIF 1-α levels increase, binds to the β subunit, 

also called ARNT (aryl hydrocarbon receptor nuclear translocator), the heterodimer translocates  to 

the nucleus, binds to the hypoxia-responsive elements (HRE), regulating the expression of target 

genes for angiogenesis,  glucose transporters and glycolytic enzymes ( Wang et al., 2012; Lin et al, 

2014) 

In our experiment, hif-1 expression and protein levels were down-regulated by exposure to the 

highest dose of BDE-47 (100µmol L-1) after 72 hours and after 15 days of exposure, which is 

according to our recent work on the same cell line exposed to BDE- 209 ( Espinosa et al, 2019). 

Nevertheless, these results contrast with the data reported in others papers that showed HIF-1 is 

increased under oxidative stress situation (Jung et al., 2008; Li et al., 2016; Wang et al., 2012; 

Manuguerra et al., 2019). As far as we know, no data are available regarding the effect of PBDEs 

47 and 99 on hif-1 expression in marine organisms. In this sense, it has been reported HIF-1 activity 
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could be influenced by AhR (aryl hydrocarbon receptor) (Regoli and Giuliani, 2014). AhR could 

interact with xenobiotics, which produces its activation by separation from HSP90 (Kolluri et al., 

1999; Ma and Whitlock, 1996). Then, the subunit AhR-ligand is transported into the nucleus where 

it interacts with ARNT (HIF-1β) and binds to specific DNA regions. Thus, AhR could activate the 

expression of detoxification enzymes, which includes phase I enzymes (Rowlands and Gustafsson, 

1997; Whitlock Jr. et al., 1996). For this reason, AhR agonists can downregulate the HIF-1 pathway 

due to the competition for ARNT (Chan et al., 1999; Matikainen et al., 2001; Nie et al., 2001). This 

could be a plausible explanation of our results, even if this aspect must be investigated in future 

researches. 

Interestingly, it has been reported that AMPK and HIF-1 could regulate the levels of ROS in 

opposite directions, suggesting that these factors are able to modulate the levels and/or activity  one 

to another (Hwang et al., 2014). Then, HIF-1 may be downregulated by AMPK via 

phosphorylation, while AMPK could be downregulated by HIF-1 in a situation of oxidative stress 

(Hwang et al., 2014). In our experiment, both AMPK and HIF-1 showed to be significantly 

decreased after 7 and 15 days of PBDEs exposure. So, although these factor could be inhibited by 

different pathways (AhR antagonisms, etc.), it can be hypothesized that both AMPK and HIF-1 

could be downregulated each other after prolonged upregulation. Anyways, as both AMPK and 

HIF-1 are normally activated during oxidative stress situation (Han et al., 2010; Wang et al., 2012), 

the decrease of these factor after long time exposure could lead to an exacerbation of the negative 

effects produced by PBDEs, mainly via oxidative stress. For this reason, the measurement of these 

biomarkers might support valuable information about the negative effects of contaminants in 

influence both metabolism and energetic pathways, that are preliminary conditions for cell 

transformation. 

Multiple signaling pathways have been implicated in protecting cell from ROS overproduction and 

oxidative stress (Huang et al., 2015; Regoli et al., 2011). In this sense, NRF-2 is a factor which 
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plays a protective role against oxidative stress by interacting with AREs (antioxidant response 

elements) and regulates the expression of a wide range of antioxidant and phase II detoxification 

genes (Huang et al., 2015). In addition, NRF-2 is a transcription factor well conserved in marine 

species (Giuliani and Regoli, 2014). Our results showed both nrf-2 expression and protein levels 

were increased by the exposure to sub-lethal doses of PBDEs for 72 hours and 7-15 days, 

respectively. These observations are consistent with the research described in SAF-1 cells (Espinosa 

et al., 2019), in human fibroblast cell line (Manuguerra et al., 2019), on mice (Shan et al., 2017), on 

Neuro-2a cells and human extravillous trophoblast cell line (Chen et al., 2017b; Park and Loch-

Caruso, 2014), that reported the up-regulation of NRF-2 via oxidative stress induced by PBDEs 

exposure. By contrast, the exposure to the highest dose (100µmol L-1) of these compounds for 72 

hours did not affect the nrf-2 expression. The expression of the genes analyzed on cells exposed to 

100µmol L-1 seems to indicate a weak or diminished response to the contaminant. A line of 

evidence has suggested that the NRF2 pathway has various novel functions, particularly in cell 

proliferation and differentiation (Murakami and Motohashi, 2015). In this sense, intracellular ROS 

produced by PBDEs might affect different cellular processes, passing from metabolic and energetic 

change  (Dong et al., 2017; Martinez-Outschoorn et al., 2017; Mullen and DeBerardinis, 2012; 

Sullivan et al., 2016), that are process preliminary to cell transformation (Valko et al., 2007).  

In conclusion, our results demonstrated that rising concentrations of PBDEs exposure effected the 

cell vitality, mainly via oxidative stress. However, long term exposure to sub-lethal doses of PBDEs 

were able to affect different cell pathways related to cell cycle, cell metabolism, energetic balance 

and oxidative stress. Collectively, these findings suggested the cell response to low doses of PBDEs 

could be attenuated after long term exposure, avoiding the apoptosis mechanisms. Instead of 

apoptosis, the cell survival could entail the increase of cell damage, mainly via oxidative stress and, 

successively, cell transformation (Figure 4). Further studies are needed to ascertain the potential 

impact of different PBDEs on fish biology as well as the molecular mechanisms involved. 
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Legend to figures 

Figure 1. Cytotoxicity of SAF-1 cells exposed to different concentrations of (A) BDE 47 (1-

100µmol L-1) and (B) 99 (1-100µmol L-1) for 24, 48 and 72 h. Reactive oxygen species (ROS) 

production, expressed as relative fluorescence ∙ µg total proteins-1 in SAF-1 cells exposed to 

different concentrations of (C) BDE 47 (1-100µmol L-1) and (D) BDE-99 (1-100µmol L-1) for 72 h. 

Bars represent the mean ± SEM (n=6). Statistically significant differences (ANOVA; P≤0.05) were 

denoted using different letters. 

 

Figure 2. Relative gene expression of some genes related to cell cycle (p53), proliferation (erk-1), 

energetic balance (hif-1) and stress (nrf-2) from SAF-1 cells exposed to vehicle (Control), 1μmol L-

1 or 100 µmol L-1 doses of BDE 99 and 47 for 72 hours. Bars represent the mean ± SEM (n=4). 

Statistically significant differences (ANOVA; P≤0.05) were denoted using different letters. 
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Figure 3. Immunoblotting of some proteins related to cell cycle (p53), proliferation (ERK-1), 

energetic balance (HIF-1α, AMPK) and stress (NRF-2) from SAF-1 cells exposed to vehicle 

(Control) or 1μmol L-1 of BDE 99 and 47 or a Mix of the three compounds for 7 or 15 days. 

Immunoblotting of actine protein is used as a control. 
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Figure 4. Diagram showing the effects of sub-lethal doses of PBDEs exposure on the cell signaling, 

cell cycle and cell metabolism via oxidative stress. 
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Table 1. Gilthead seabream primer sequences used for real-time PCR. 

  

 

Gene Accession number  F/R Primer sequence (5’–3’)  

 
  p53  F-CCTCATCCTCATCATCGCCT 

 R- AGCTCGTTGAATTTGCAGGG 

erk-1  F- GCTCTATGGCAAGGCTGAC 

 R- TGCCTGGAAACGAGCTGTT 

hif-1  F- CTCAGCCACAGTGTGTTGTC 

 R- TACATCAACCTCGGGCAACT 

nrf2 
 

F- GTTCAGTCGGTGCTTTGACA 

 R- CTCTGATGTGCGTCTCTCCA 

ef1a  AF184170 F- CTTCAACGCTCAGGTCATCAT 

 R- GCACAGCGAAACGACCAAGGGGA  

18S AM490061 F- CTTCAACGCTCAGGTCATCAT  

 R- AGTTGGCACCGTTTATGGTC 
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