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DEGENERATING 0 IN TRIANGULATED CATEGORIES

MANUEL SAORÍN AND ALEXANDER ZIMMERMANN

Abstract. In previous work, based on work of Zwara and Yoshino, we defined and studied degen-
erations of objects in triangulated categories analogous to degeneration of modules. In triangulated
categories it is surprising that the zero object may degenerate. We study this systematically. In
particular we show that the degeneration of the zero object actually induces all other degenerations
by homotopy pullback, that degeneration of 0 is closely linked, but not equivalent, to having zero
image in the Grothendieck group.

Introduction

Degeneration of modules were intensively studied by e.g. Gabriel [5], Huisgen-Zimmermann,
Riedtmann [14], Zwara [22, 23] since at least 1974, and was highly successful in various constructions.
Degeneration of modules is defined by the following setting. Let k be an algebraically closed field,
and let A be a finite dimensional k-algebra. Then the A-module structures on the vector space
kd form an affine algebraic variety mod(A, d) on which GLd(k) acts by conjugation. Isomorphism
classes correspond to orbits under this action and an A-module M degenerates to N if the point
corresponding to N belongs to the Zariski closure of the GLd(k)-orbit of the point corresponding
to M . We write M ≤deg N in this case. Riedtmann and Zwara showed that M ≤deg N if and
only if there is an A-module Z and a short exact sequence 0 → Z → Z ⊕M → N → 0. The last
relation is denoted by M ≤Zwara N . In collaboration with Jensen and Su [8] the second named
author started to study an analogous concept for derived categories with a geometrically inspired
concept based on orbit closures, and then in [9] more generally for triangulated categories based
on Zwara’s characterisation replacing short exact sequences by distinguished triangles. This last
relation is denoted by the symbol ≤∆. Both concepts were highly successfully used in many places,
cf e.g. [10, 11, 12, 3, 4, 6, 7, 21]. Independently Yoshino [20] gave a scheme theoretic definition for
degenerations in the (triangulated) stable category of maximal Cohen-Macaulay modules, and he
highlighted that in M ≤∆ N one should assume that the induced endomorphism on Z should be
nilpotent. We denote the relation by ≤∆+nil in this case. Yoshino’s scheme theoretic approach was
a model for us to give a more general geometric definition for degeneration, which was achieved in
[16] by introducing a scheme theoretic degeneration ≤cdeg. We then showed that, in case T has split
idempotents, M ≤cdeg N always implies M ≤∆+nil N , for objects M,N ∈ T , the converse being also
true when T is the subcategory of compact objects of a compactly generated algebraic triangulated
category. We gave the rather technical definition of ≤cdeg by means of an ambient triangulated
category and a natural transformation t of the identity functor of this category satisfying a certain
number of axioms. The actual degeneration M ≤cdeg N is then given by an object Q in this ambient
category such that the cone of tQ is N , and such that M and Q become isomorphic when one inverts
all morphisms tX for all objects X in the ambient category in the Gabriel-Zisman sense. For more
ample details we refer to Section 1.

A striking phenomenon is that, unlike in the module case, in triangulated categories T one may
have non zero objects M with 0 ≤∆+nil M . In the present paper we study this phenomenon system-
atically.

As a first result we show that 0 ≤cdeg M is given by objects Q so that the identity transformation
t of the degeneration data has the property that tQ is nilpotent.

Second, we show in the present paper that if M ≤∆ N via a distinguished triangle

Z
(αβ) // Z ⊕M

(γ,δ) // N // Z[1],
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then 0 ≤∆ cone(α) and 0 ≤∆ cone(δ), and if 0 ≤∆ X via a distinguished triangle

Z
α // Z // X // Z[1],

then for any morphism M −→ Z the homotopy pullback N along M −→ Z
α
←− Z gives a degen-

eration M ≤∆ N . Analogous statements hold for ≤∆+nil. Note that 0 ≤∆ M if and only if M is
the cone of an endomorphism v of some object Z, and 0 ≤∆+nil M if and only if v is in addition
nilpotent. Hence, degeneration of 0 is very intrinsic in degenerations of triangulated categories. It is
not possible to get rid of this phenomenon, when one wants to study degenerations. Therefore, our
observation interprets degeneration as some sort of deformation along a (nilpotent) endomorphism
of some parameter space Z via a homotopy pullback construction.

Third, it is quite clear that 0 ≤∆ N implies that N has vanishing image in the Grothendieck
group of the triangulated category. We characterise the objects with image being the zero object
in the Grothendieck group by showing that this condition is equivalent to the fact that M ≤∆⊕r

i=1(Xi ⊕Xi[ti]) for pairwise different odd integers ti, and objects Xi of T . This indicates already
that the objects X⊕X [t], with t odd, are very intimately linked to degeneration phenomena. When
X runs through a generating set of the triangulated category, we show that the triangulated category
generated by these objects coincides with the full triangulated subcategory T 0 of T consisting of
objects with image 0 in the Grothendieck group. We further show that the triangulated subcategory
generated by objects which are degenerations of 0 coincides with T 0. We give a class of examples
of a triangulated category T , and an object X in T such that [X ] = 0 in K0(T ), but 0 6�∆+ nil X ,
where �∆+ nil is the transitive hull of the relation ≤∆+nil . It is not hard to get another class of
examples where [X ] = 0 in K0(T ) but where 0 6≤∆ X .

The paper is organised as follows. In Section 1 we recall the necessary concepts on the various
types of degeneration. In Section 2 we study ≤cdeg and show that 0 ≤cdeg M if and only if tQ is
nilpotent for the corresponding degeneration data. In Section 3 we show that triangle degeneration
of zero is always present in triangle degenerations in triangulated categories. Indeed all triangle
degenerations are obtained from degenerations of zero via homotopy cartesian squares. In Section 4
we study the image of triangle degenerations of 0 in the Grothendieck group.

1. Review on Degenerations in Triangulated Categories

We have different degeneration concepts. The first one, the triangle degeneration, is a triangular
category analogue of Zwara’s definition of degeneration in the case of module categories. Zwara says
[22, 23] that for a k-algebra A an A-module M degenerates to an A-module N if and only if there
is an A-module Z and a short exact sequence 0→ Z → Z ⊕M → N → 0. Yoshino [20] highlighted
the importance of assuming that the induced endomorphism of Z should be nilpotent. In case of a
category where Fitting’s lemma holds we can always assume this fact.

Definition 1. [9, 16] Let K be a commutative ring and let T be a K-linear triangulated category.
Then for two objects M and N in T we get M ≤∆ N , accasionally written M ≤∆,left N , if and only
if there is Z and a distinguished triangle

Z
(vu) // Z ⊕M // N // Z[1].

We say that M ≤∆+nil N , or occasionallyM ≤∆+nil, left N , if and only if there is such a distinguished
triangle with v is nilpotent.

Note that by [17] M ≤∆+nil N implies that there is an object Z ′ and a distinguished triangle

N // Z ′ ⊕M
(v′,u′) // Z ′ // N [1].

We write M ≤∆,right N (resp. M ≤∆+nil, right N) if there is such a distinguished triangle (with v′

nilpotent). Note that M ≤∆,left N (resp. M ≤∆+nil,left N) in T if and only if M ≤∆,right N (resp.
M ≤∆+nil,right N) in the opposite category T op. So categorical duality applies and results about
≤∆,left (resp. ≤∆+nil, left) admit categorical dual ones, that we sometimes omit to state.

If T has split idempotents and artinian endomorphism rings of objects, or if T is the category of
compact objects in a compactly generated algebraic triangulated category, then M ≤∆+nil, right N if
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and only if M ≤∆+nil, left N (see [17, Theorem 1]). For a general triangulated category T , when we
write ≤∆ (resp. ≤∆+nil) we will mean ≤∆,left (resp. ≤∆+nil, left).

Corollary 2. Let K be a commutative ring and let T be a K-linear triangulated category. Then
M ≤∆ N implies that [M ] = [N ], where [X ] denotes the image of X in K0(T ).

Indeed, this is a direct consequence of the fact that there is a distinguished triangle

Z
(vu) // Z ⊕M // N // Z[1].

The distinguished triangle shows [Z] + [N ]− [Z ⊕M ] = 0 in the Grothendieck group, and therefore
[M ] = [N ].

A second concept of degeneration, motivated by Yoshino’s work, is given by the following defini-
tion.

Definition 3. [16] Let K be a commutative ring and let C◦K be a K-linear triangulated category
with split idempotents.

A degeneration data for C◦K is given by

• a triangulated category CK with split idempotents and a fully faithful embedding C◦K −→ CK ,
• a triangulated category CV with split idempotents and a full triangulated subcategory C◦V ,
• triangulated functors ↑VK : CK −→ CV , which we write after the arguments, and Φ : C◦V → CK ,
so that (C◦K) ↑VK⊆ C

◦
V , when we view C◦K as a full subcategory of CK ,

• a natural transformation idCV

t
−→ idCV

of triangulated functors such that

• for each objectM of C◦K the morphism Φ(M ↑VK)
Φ(t

M↑V
K

)
// Φ(M ↑VK) is a split monomor-

phism in CK with cone M .

Degeneration is then given by the following concept.

Definition 4. [16] Given two objects M and N of C◦K we say that M degenerates to N in the
categorical sense if there is a degeneration data for C◦K and an object Q of C◦V such that

p(Q) ≃ p(M ↑VK) in C◦V [t
−1] and Φ(cone(tQ)) ≃ N,

where C◦V [t
−1] is the Gabriel-Zisman localisation at the endomorphisms tX for all objects X of C◦V ,

and where p : C◦V −→ C
◦
V [t

−1] is the canonical functor. In this case we write M ≤cdeg N .

Remark 5. We note that this concept is a generalisation to general triangulated categories of a
definition given by Yoshino [20] for the case of stable categories of maximal Cohen-Macaulay modules
over a local Gorenstein algebra.

We get the following connection on these two concepts ≤∆+nil and ≤cdeg.

Theorem 6. [16] Let T be a K-linear triangulated category with split idempotents. Then

M ≤cdeg N ⇒M ≤∆+nil N

and if T is the category of compact objects in a compactly generated algebraic triangulated category
then

M ≤cdeg N ⇔M ≤∆+nil N.

Corollary 7. Let T be a K-linear triangulated category with split idempotents. Then

M ≤cdeg N ⇒ [M ] = [N ]

in K0(T ).

Indeed, this is Theorem 6 in connection with Corollary 2.

Let T be a skeletally small triangulated category. In [9] it is studied when ≤∆ is a partial order
on the isomorphism classes of objects in T , and in particular when ≤∆ is a transitive relation. In
general this is not the case. However the following was proved there.

Proposition 8. [9, Proposition 2] Let T be a triangulated category with split idempotents such that
the endomorphism ring of each object in T is artinian. Then ≤∆+ nil coincides with ≤∆ and both
relations are transitive and reflexive on the set of isomorphism classes of objects in T .
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2. Scheme theoretic degeneration of zero

2.1. Torsion Degeneration Data. Recall that in [19] Yoshino defines as well the scheme theoretic
definition of a degeneration of modules. Let A be a k-algebra for some field k. Yoshino says that
the A-module M degenerates to the A-module N along a discrete valuation ring if there is a discrete
valuation k-algebra V with uniformiser t and a finitely generated A⊗k V -module Q which is flat as
V -module, such that Q/tQ ≃ N , and such that Q[t−1] ≃M ⊗k V [t−1]. In [20] a similar setting was
used for degeneration in a triangulated (stable) category, and there the condition on Q to be flat
over V is missing. We now explain why this is the case.

Proposition 9. Let C◦K be a K-linear triangulated category with split idempotents. Then 0 ≤cdeg N
if and only if there is a degeneration data (C◦K , CK , C◦V , CV , ↑

V
K ,Φ, t) and Q an object in C◦V such that

tQ is nilpotent with
cone(Φ(tQ)) ≃ Φ(cone(tQ)) ≃ N and Φ(Q) ∈ C◦K .

Proof. Suppose we have a degeneration data and by [16, Lemma 7] Q an object in C◦V so that tQ is
nilpotent with

cone(Φ(tQ)) ≃ Φ(cone(tQ)) =: N ∈ C◦K .

Then p(Q) ≃ 0 since tQ is nilpotent. Hence, by definition 0 ≤cdeg N .
If 0 ≤cdeg N , then there is a degeneration data and an object Q in C◦V with nilpotent tQ and

Φ(cone(tQ)) = N ∈ C◦K . Note that the proof of the first part of Theorem 6 gives that actually
Φ(cone(f)) is the object named Z, where f : M ↑VK−→ Q is a morphism such that p(f) is an
isomorphism. In case M = 0, then cone(f) = Q, and hence Φ(Q) = Z ∈ C◦K . �

Remark 10. We just proved that when we want to consider degenerations M ≤cdeg N without
direct factor 0 ≤cdeg X , then it is necessary and sufficient to add as an additional condition that Q
does not have any non zero direct factor Q′ with Φ(Q′) ∈ C◦K such that tQ′ is nilpotent.

2.2. Triangle degeneration of zero.

Lemma 11. Let T be a triangulated category with split idempotents. Then 0 ≤∆ N (resp. 0 ≤∆+nil

N) is equivalent to N = cone(v) for some (resp. nilpotent) endomorphism v of an object Z. More-
over, in this case N ≤∆+nil Z ⊕ Z[1].

Proof. If T is aK-linear triangulated category with split idempotents. Then 0 ≤∆ N (resp. 0 ≤∆+nil

N) is equivalent to the existence of an object Z of T and a (resp. nilpotent) endomorphism v of Z
such that N = cone(v). In other words there is a distinguished triangle

Z
v // Z

ǫ // N
δ // Z[1].

Then, since

0 // Z
idZ // Z // 0

is a distinguished triangle, also

Z ⊕ Z[−1]
( v 0 )

// Z

(

ǫ
0

)

// N ⊕ Z

(

δ 0
0 idZ

)

// Z[1]⊕ Z

is a distinguished triangle. Shift to the left gives a distinguished triangle

Z

(

ǫ
0

)

// N ⊕ Z

(

δ 0
0 idZ

)

// Z[1]⊕ Z
( v 0 )

// Z[1]

Now, 0 is clearly nilpotent, and hence N ≤∆+nil Z ⊕ Z[1]). �

Theorem 12. Let T be a triangulated k-category. The following assertions hold:

(1) If M ≤∆,left N (resp. M ≤∆+nil,left N) via a distinguished triangle

Z

(

u
v

)

// M ⊕ Z
( π τ )

// N
µ // Z[1] ,
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where v is a nilpotent endomorphism for ≤∆+nil,left, then 0 ≤∆,left cone(π) ≃ cone(v) (resp.
0 ≤∆+nil, left cone(π) ≃ cone(v)).

(2) If M ≤∆,right N (resp. M ≤∆+nil,right N) via a distinguished triangle

N

(

σ
λ

)

// M ⊕ Z ′
( u′ v′ )

// Z ′
µ′

// N [1] ,

where v′ is a nilpotent endomorphism for ≤∆+nil,right, then 0 ≤∆,right cone(σ) ≃ cone(v′)
(resp. 0 ≤∆+nil, right cone(σ) ≃ cone(v′)).

On the other hand, if C is the cone of the (resp. nilpotent) endomorphism v of Z, then for every
morphism u : M −→ Z, by homotopy pullback along u we obtain N such that M ≤∆,right N (resp.
M ≤∆+nil, right N when v is nilpotent). Similarly, for every u′ : Z −→ M by homotopy pushout
along u′ we obtain N such that M ≤∆,left N (resp. M ≤∆+nil, left N when v′ is nilpotent).

Proof. Assertion 2 is the categorical dual of assertion 1. So we just prove this last assertion. Consider
the distinguished triangle

Z

(

u
v

)

// M ⊕ Z
( π τ )

// N // Z[1] .

By definition, the square

Z
v //

u

��

Z

τ

��
M

π // N

is homotopy cartesian. We then complete the horizontal maps to distinguished triangles to get a
morphism between triangles.

Z
v //

u

��

Z

τ

��

ν // C(v) //

α

��✤
✤

✤

Z[1]

u[1]

��
M

π // N
µ // C(π) // M [1]

.

We may choose α to be an isomorphism and, by the upper row of the diagram, we conclude that
0 ≤∆,left C(v) ≃ C(π), resp. 0 ≤∆+nil, left C(v) ≃ C(π) when v is nilpotent.

For the last statement, we just prove one half of it since the other half is dual. Let us consider
the distinguished triangle

Z
v // Z // C // Z[1] .

For any morphism u : M −→ Z we may complete the diagram

M

u

��
Z

v // Z
µ // C // Z[1]

to

M

u

��

µu // C′

idC

��
Z

v // Z
µ // C // Z[1]

By the dual of Neeman [13, Lemma 1.4.3] there is an object N and a morphism v such that

N
σ //

v

��

M

u

��

µu // C

idC

��

// N [1]

v[1]

��
Z

v // Z
µ // C // Z[1]
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is a morphism of distinguished triangles such that

N
σ //

v

��

M

u

��
Z

v // Z

is a homotopy cartesian square. By definition this gives a distinguished triangle

N // M ⊕ Z // Z // N [1]

Hence M ≤∆,right N , (resp. M ≤∆+nil, right N when v is nilpotent). �

Definition 13. Let T be a triangulated category, let M and Z be objects in T and let v be an
endomorphism of Z. For u ∈ HomT (M,Z) we denote by (Deg(u, v), r, s), or just Deg(u, v) for short,
the homotopy pullback

Z
v // Z

Deg(u, v)

r

OO

s // M.

u

OO

Dually, for u′ ∈ HomT (Z,M) we denote by (Ged(u′, v), r, s), or just Ged(u′, v) for short, the homo-
topy pushout

Z

u′

��

v // Z

r

��
M

s // Ged(u′, v).

We then have
M ≤∆, right Deg(u, v) and M ≤∆, left Ged(u′, v)

and if v is in addition nilpotent, then

M ≤∆+nil, right Deg(u, v) and M ≤∆+nil, left Ged(u′, v).

Remark 14. Suppose T has split idempotents and either endomorphism rings of objects in T are
artinian or else T is the category of compact objects in an algebraic compactly generated triangulated
category. Then [17] shows that

• for each object Z, nilpotent endomorphism v of Z and morphism M
u
−→ Z there is an

object Z ′, a nilpotent endomorphism v′ of Z ′ and a morphism Z ′ u′

−→M with Ged(u′, v′) ≃
Deg(u, v),

• and for each object Z ′, nilpotent endomorphism v′ of Z ′ and morphism Z ′ u′

−→ M there is

an object Z, a nilpotent endomorphism v of Z and a morphism M
u
−→ Z with Ged(u′, v′) ≃

Deg(u, v).

Example 15. Consider a finite dimensional k-algebra A over an algebraically closed field k. Let M
and N be two finite dimensional A-modules, and suppose M ≤deg N . Then by the Zwara-Riedtmann
theorem [23] there is a finite dimensional A-module Z and a short exact sequence

0 // Z
(vu) // Z ⊕M

(τ,π) // N // 0.

A trivial case is when there is a short exact sequence

0 // N1
ι // M

ρ // N2
// 0.

Taking Z = N1 the short exact sequence

0 // N1

(

ι
0

)

// M ⊕N1

(

ρ 0
0 idN1

)

// N2 ⊕N1
// 0
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is a Zwara-Riedtmann sequence. In particular, in this case v = 0. Since A − mod →֒ Db(A),
by mapping a module to the corresponding stalk complex in degree 0, we can consider the Zwara
exact sequence as three terms of a distinguished triangle. By Theorem 12 the map π in the general
setting yields a degeneration 0 ≤∆+nil cone(π) in D

b(A). Of course there is no degeneration of 0 of
modules. Hence, this phenomenon is a purely triangulated one. What does this give in this particular
situation? Actually, for a general π, we get

cone(π) = (. . . −→ 0 −→M
π
−→ N −→ 0 −→ . . . )

is the two term complex concentrated in degrees −1 and 0. In the special situation of the short exact
sequence

0 // N1
ι // M

ρ // N2
// 0

we see that v = 0 and

cone(π) = cone
(
ρ 0

)
≃ (. . .→M

ρ
→ N2 → 0 . . . )⊕N1 ≃ ker(ρ)[1]⊕N1 ≃ N1[1]⊕N1

since ρ is surjective, and hence the two term complex given by ρ is isomorphic, in the derived category,
to the kernel of ρ. This is coherent with the computation of the degeneration given by the zero map
on Z = N1.

3. Triangle degeneration as homotopy cartesian square: some consequences

3.1. The case of a single degeneration object. In view of Theorem 12 we consider degeneration
as homotopy cartesian squares.

Lemma 16. Let T be a triangulated category, let Z
w
−→ M

u
−→ Z be morphisms in T and let

ν1, ν2 : Z −→ Z be endomorphisms. Denote Deg(u, ν1) = (Deg(u, ν1), r1, s1) and Ged(w, ν2) =
(Ged(w, ν2), r2, s2) for short. The following assertions hold:

(1) Deg(u, ν1) ≤∆,right Deg(u, ν1ν2) as well as Deg(u, ν1ν2) = Deg(r1, ν2). When ν2 is nilpo-
tent, we can replace ≤∆,right by ≤∆+nil,right.

(2) Ged(w, ν2) ≤∆,left Ged(w, ν1ν2) as well as Ged(u, ν1ν2) = Ged(r2, ν1). When ν1 is nilpotent,
we can replace ≤∆,left by ≤∆+nil,left.

Proof. Assertion 1 follows from assertion 2 by categorical duality, so we just prove assertion 2. Let us
consider the following diagram, where the upper inner and the outer squares are homotopy cartesian

Z
w //

ν2

��

M

s2

��
s21

zz

Z
r2 //

ν1

��

Ged(w, ν2)

f

��✤
✤

✤

Z
r21 // Ged(w, ν1ν2)

There is then a dotted morphism f : Ged(w, ν2) −→ Ged(w, ν1ν2) completing commutatively the
diagram (see [13, page 54]). But, by [17, Lemma 9], we can choose f so that the square

Z
r2 //

ν1

��

Ged(w, ν2)

f

��
Z

r21 // Ged(w, ν1ν2)

is homotopy cartesian. Therefore we have Ged(w, ν2) ≤∆,left Ged(w, ν1ν2) as well as Ged(u, ν1ν2) =
Ged(r2, ν1). We can replace ≤∆,left by ≤∆+nil,left when ν1 is nilpotent. �
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3.2. The case of two degeneration objects. In this subsection we show that a degeneration
M ≤∆,right N obtained by two different triangles, but with the same morphism N −→M , naturally
yields another degeneration. Concretely:

Proposition 17. Let T be a triangulated category and let M ≤∆,right N (resp. M ≤∆+nil,right N)
be a degeneration obtained by the following homotopy cartesian squares

Z
v // Z

N

t

OO

s // M

u

OO and Z ′ v′

// Z ′

N

t′

OO

s′ // M

u′

OO

where v and v′ are assumed to be nilpotent endomorphism in the ≤∆+nil,right-case, and suppose that

s = s′. If X denotes the (lower right corner of) the homotopy pushout along Z
t
←− N

t′

−→ Z ′

and Y denotes that of the homotopy pushout along Z
u
←− M

u′

−→ Z ′, then X ≤∆,left Y (resp.
X ≤∆+nil,left Y ) .

Remark 18. Note that the order X ≤∆ Y is inverse to the order M ≤∆ N .

Remark 19. Note that Proposition 17 should be seen in the context of Bongartz [2, Lemma 1.1].
There it is shown that if

0→M ′ →M →M ′′ → 0

is a short exact sequence, then M degenerates to the pushout Ny along an endomorphism of M ′,
and M degenerates to the pullback Np along an endomorphism of M ′′.

Proof. (of Proposition 17). Note that X and Y are uniquely determined up to non-unique iso-
morphism. However, we have some freedom for the choice of the morphisms which complete

Z
t
←− N

t′

−→ Z ′ and Z
u
←− M

u′

−→ Z ′ to the corresponding homotopy pushouts. We claim that we
can choose the morphisms w : Z −→ Y and w′ : Z ′ −→ Y so that the two squares and the patching
of them in the following commutative diagram are homotopy cartesian:

N

t

��

s // M

u

��

u′

// Z
′

w′

��
Z

v
// Z

w
// Y

. (∗)

Indeed, by the statement of the proposition, the left square is homotopy cartesian and now we can

form the homotopy pushout of Z N
too u′s // Z ′ , completing with morphisms Z

η // W Z ′
ρoo

such that we get the following homotopy cartesian square

N

t

��

u′s // Z ′

ρ

��
Z

η
// W.

Since we have an equality ηt = ρu′s, by properties of homotopy pushouts, we get a not necessarily
unique morphism ϕ : Z −→ W such that ϕv = η and ϕu = ρu′. This leads to the following
commutative diagram, where the left square and the patching of the two squares are homotopy
cartesian:

N

t

��

s // M

u

��

u′

// Z
′

ρ

��
Z

v
// Z

ϕ
// W

.
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By [17, Lemma 9], one can replace ϕ by an appropriate substitute so that the right square is
also homotopy cartesian. But then W is isomorphic to Y and, looking at this isomorphism as an
identification, we can choose w′ = ρ and w to be the mentioned substitute of ϕ.

Now the different homotopy cartesian squares fit as faces of the following almost-cube:

Z
v //

y

  ❆
❆

❆

❆

❆

❆

❆

❆

Z

w

  ❇
❇

❇

❇

❇

❇

❇

❇

X Y

N

t

OO

s ++

t′

  ❆
❆

❆

❆

❆

❆

❆

❆

M

u

OO

u′

  ❇
❇

❇

❇

❇

❇

❇

❇

Z ′ v′

//

y′

KK

Z ′

w′

OO

Since X is a homotopy pushout, and since

wvt = wus = w′u′s = w′v′t′,

there is a morphism X
d
−→ Y such that

yd = wv and dy′ = w′v′.

We can complete the vertical morphisms to distinguished triangles and obtain hence the commutative
diagram with vertical sequences being distinguished triangles.

U

❆

❆

❆

❆

❆

❆

❆

❆

❆

❆

❆

❆

❆

❆

❆

❆

+

OO

U

❇

❇

❇

❇

❇

❇

❇

❇

❇

❇

❇

❇

❇

❇

❇

❇

+

OO

U

+

GG

U

+

OO

Z v //

y

  ❆
❆

❆

❆

❆

❆

❆

❆

OO

Z

w

  ❇
❇

❇

❇

❇

❇

❇

❇

SS

X
d ++

SS

Y

OO

N

t

OO

s ++

t′

  ❆
❆

❆

❆

❆

❆

❆

❆

M

u

KK

u′

  ❇
❇

❇

❇

❇

❇

❇

❇

Z ′ v′

//

y′

KK

Z ′

w′

OO

In particular, we get the following commutative diagram:

N

t

��

t′ // Z
′

y′

��

v′

// Z
′

w′

��
Z

y
// X

d
// Y

.

Its left square is homotopy cartesian by hypothesis and the patching of the two square is the pathching
of the two squares in the diagram (*) above, and then is also homotopy cartesian. By [17, Lemma
9] again, replacing d by a suitable d′, we can assume without loss of generality that the right square
is also homotopy cartesian. But this shows that X ≤∆,left Y (resp. X ≤∆+nil,left Y when v and v′

are nilpotent). �
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Corollary 20. Suppose that T has split idempotents and is either the category of compact objects
in an algebraic compactly generated triangulated category, or else has artinian endomorphism rings
of objects. In the notation of Proposition 17, then

M ≤∆+nil N ⇒ X ≤∆+nil Y.

Proof. Indeed, using [17], we see that X ≤∆+nil,right Y ⇔ X ≤∆+nil,left Y under these hypotheses.
�

4. Degeneration of zero and the zero objects in the Grothendieck group

Recall that, given full subcategories U and V of a triangulated category T , then the subcategory
U ⋆ V is the full subcategory of T consisting of the objects M that fit in a distinguished triangle
U −→ M −→ V −→ U [1], with U ∈ U and V ∈ V . It is well-known that the operation ⋆ is
associative, in the sense that (U ⋆ V) ⋆W = U ⋆ (V ⋆W), for all subcategories U ,V ,W of T (see [1,
Lemme 1.3.10]). If one puts U⋆n = U ⋆ · · · ⋆ U︸ ︷︷ ︸

n factors

, for each n ≥ 0 (with the convention that U⋆0 = 0),

then Uext =
⋃

n∈N
U⋆n is the extension closure of U , that is, the smallest subcategory of T closed

under extensions that contains U . The smallest triangulated subcategory of T that contains U ,
denoted triaT (U), is

triaT (U) =
⋃

n∈N

⋃

(r1,...,rn)∈Zn

U [r1] ⋆ · · · ⋆ U [rn].

In other words, the objects of triaT (U) are precisely those M admitting a sequence

0 = M0
f1
−→M1

f2
−→ · · ·

fn−1

−→ Mn−1
fn
−→Mn = M,

where cone(fk) is isomorphic to Uk[rk], for some Uk ∈ U and some rk ∈ Z, for all k = 1, ..., n.
Let T be a skeletally small triangulated category. All throughout this section we will put

≤∆=≤∆,left and ≤∆+nil=≤∆+nil ,left Recall from Proposition 8 that ≤∆ can be shown to be a tran-
sitive relation in some cases. On the other hand, we will denote by �∆+nil the smallest transitive
relation containing ≤∆+nil.

Theorem 21. Let S be a set of objects in the triangulated category T such that T = triaT (S), let

[S] := {[S]: S ∈ S} denote the corresponding set of generators of the group K0(T ) and let Ŝ be the
subcategory of T consisting of the objects X which are finite direct sums of shifts of objects in S and
are such that [X ] = 0 in K0(T ). Denote by

• T 0
∆ (resp. T 0

∆+nil) the full subcategory of T consisting of the objects X such that 0 ≤∆ X
(resp. 0 ≤∆+nil X)
• and by T 0 the (triangulated) subcategory of T consisting of the objects M such that [M ] = 0
in the group K0(T ).

Then the following assertions hold:

(1) An object M is in T 0 if, and only if, M ≤∆ X (resp. M �∆+nil X), for some X ∈ Ŝ. When
[S] is a basis of K0(T ) the objects X can be chosen to be finite direct sums of shifts of objects
in S̄ := {S ⊕ S[2k + 1]: k ∈ Z;S ∈ S}.

(2) T 0 = triaT (S ⊕ S[tS ]: S ∈ S), for every choice of odd integers tS.
(3) T 0 is the extension closure of T 0

∆ (resp. T 0
∆+nil).

Proof. (1) By Corollary 2, the ‘if’ part of this implication is clear. For the ‘only if’ part, we first
claim that, for each M ∈ T , one has that M �∆+nil ⊕S∈S ⊕k∈Z S[k]mS,k , where the S are in S and
the mk,S are nonnegative integers, all zero but a finite number. Recall that T = triaT (S), and so
we have a finite sequence

0 = M0
f1
−→M1

f2
−→ · · ·

fn
−→Mn = M (∗)

such that Ck := cone(fk) is a shift of some object of S, for each k = 1, ..., n. We will settle our claim
by induction on n > 0, the case n = 1 being clear. Suppose now that n > 0 and consider the induced
triangle

Mn−1
fn // M

g // Cn
// Mn−1[1],
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where Cn
∼= S[k], for some S ∈ S and k ∈ Z. Taking the homotopy pushout of fn and the zero

endomorphism Mn−1
0
−→Mn−1, we readily see that we have a distinguished triangle

Mn−1

(

0
fn

)

// Mn−1 ⊕M // Mn−1 ⊕ Cn
// Mn−1[1].

That is, we have M �∆+nil Mn−1 ⊕ Cn
∼= Mn−1 ⊕ S[k]. The result then follows by induction since

Ai �∆+nil Bi, for i = 1, 2, implies that A1 ⊕A2 �∆+nil B1 ⊕B2.
We also claim that M ≤∆ ⊕S∈S ⊕k∈Z S[k]mS,k , for Sk and mS,k as in the previous paragraph.

Using again the sequence (∗) and bearing in mind that each cone Ck is a shift of some object in S,
we consider the distinguished triangles

Mk−1
fk // Mk

// Ck
// Mk−1[1]

for all k ∈ {1, . . . , n−1}. Taking the direct sum of these distinguished triangles we get a distinguished
triangle

(⊕n−1
k=1 Mk

)
⊕

n
k=1

fk//
(
M ⊕

⊕n−1
k=1 Mk

)
// (
⊕n

k=1 Ck) //
(⊕n−1

k=1 Mk

)
[1]

and hence M ≤∆

⊕n
k=1 Ck, as desired.

The last two paragraphs show that we have M �∆+nil X and M ≤∆ Y , for objects X,Y which
are direct sums of shift of objects of S. When in addition M ∈ T 0, by Corollary 2, we also have

[X ] = [Y ] = 0 in K0(T ). Therefore we have that X,Y ∈ Ŝ. This proves assertion 1, except for the
final statement.

To prove that final statement, suppose that [S] is a basis of K0(T ). We shall prove that in this

case each object of Ŝ is a direct sum of objects of the form S[k]⊕S[l] = (S⊕S[l−k])[k], with S ∈ S

and exactly one of l and m being odd. This will end the proof. Let then take X ∈ Ŝ and decompose
it as X = ⊕S∈S ⊕k∈Z S[k]

mS,k . Note that, due to the fact that [S] is a basis of K0(T ), the summand
XS = ⊕k∈ZS[k]

mk,S also satisfies that [XS ] = 0 in K0(T ), for each S ∈ S. So it is not restrictive to
assume that X = S[k1]

m1 ⊕ S[k2]
m2 ⊕ · · · ⊕ S[kr]

mr , for some pairwise different integers k1, . . . , kr,
where, for simplicity, we have put mki,S = mi > 0 for i = 1, . . . , r. We can reorder the summands in
this last direct sum, so that ki is even, for 1 ≤ i ≤ t, and ki is odd, for t < i ≤ n. Bearing in mind
that [S[k]] = (−1)k[S] in K0(T ), that [S] is a basis of K0(T ) and that [X ] = 0 in this latter abelian

group, we conclude that
∑t

i=1 mi =
∑n

i=t+1 mi. We call m(X) this last integer which is strictly
positive when X 6= 0.

We now prove the result by induction onm(X) > 0. Ifm(X) = 1 then we have thatX ∼= S[k]⊕S[l],
where k is even and l is odd, and we are done. Ifm > 1, we put q = min{m1, . . . ,mr}. We decompose
m1 = q + m′

1 and mn = q + m′
n and m′

i = mi, for all i 6= 1, n. Then we have a decomposition

X = (S[k1] ⊕ S[kn])
q ⊕X ′, where k1 and kn are even and odd, respectively, and X ′ = ⊕n

i=1S[ki]
m′

i

is either zero or a nonzero summand such that [X ′] = 0 in K0(T ) and m(X ′) < m(X). Then the
induction hypothesis applies.

(2) Let (tS)S∈S be a collection of odd integers and put D := triaT (S ⊕ S[tS ]: S ∈ TS). It follows
that each object of S is a direct summand of an object of D and since each object T of T = triaT (S)
is a finite iterated extension of objects of the form S[k], with S ∈ S and k ∈ Z, it easily follows
that each such T is a direct summand of an object of D. This means that D is a dense triangulated
subcategory of T in the terminology of [18]. Moreover, we clearly have D ⊆ T 0. But [18, Theorem
2.1] gives an order-preserving bijection between the dense triangulated subcategories of T and the
subgroups of K0(T ). Since T

0 corresponds to 0 by this bijection we get that D = T 0, as desired.
(3) Note that assertion 2 implies assertion 3. Indeed, by the comments preceding Theorem 21,

assertion 2 says that T 0 is the extension closure of {(S ⊕ S[tS ])[n]: S ∈ S and n ∈ Z}, for any
choice of odd integers tS (S ∈ S). We may choose tS = 1 for each S, and then it is obvious that
0 ≤∆+ nil S ⊕ S[1]. Since we have inclusions

{(S ⊕ S[1]): S ∈ S} ⊂ T 0
∆+nil ⊂ T

0
∆ ⊆ T

0

assertion 3 immediately follows. �
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Example 22. The following are examples of a triangulated category T and a set S of its objects
that satisfy the hypotheses of Theorem 21 and, in addition, [S] is a basis of K0(T ). Here K is a
commutative ring

(1) Call a dg K-algebra A homologically non positive when HkA = 0, for all k > 0, and call it
homologically finite dimensional when H∗(A) = ⊕k∈ZH

k(A) is a K-module of finite length.
For instance, any Artin algebra is homologically non positive and homologically finite di-
mensional over its center, when viewed as dg algebra. Let A be a homologically non positive
homologically finite dimensional dg algebra and let T = Db

fl(A) be the subcategory of the

derived category D(A) consisting of the dg A-modules M such that H∗(M) = ⊕k∈ZH
k(M)

has finite length as a K-module. When choosing as S a set of representatives, up to iso-
morphism in D(A), of the dg A-modules S such that H∗(S) = H0(S) (i.e. its homology is
concentrated in degree zero) and H0(S) is a simple H0(A)-module, one has that T and S
satisfy the hypotheses of Theorem 21 and [S] is a basis of K0(T ). In particular, taking A
to be an Artin algebra, T = Db(mod − A) and S be a set of representatives, up to isomor-
phism, of the simple A-modules (viewed as stalk complexes in degree zero), the hypotheses
of Theorem 21 hold and [S] is a basis of K0(T ).

(2) Suppose that A is an additive category with a set S ′ of objects such that A = add(S ′) and the
Grothendieck groupK0(A) is free with {[S]: S ∈ S

′} as a basis. Then the bounded homotopy
category T = Kb(A) and the set S = S ′[0] of stalk complexes S′[0], with S′ ∈ S ′, satisfy
the hypotheses of Theorem 21 (see [15, Theorems 1.1 and 1.2]). This includes the case when
T = Kb(A−proj), where A is a principal ideal domain or a semiperfect ring, in particular an
Artin algebra, by taking as S ′ the set of (isomorphism classes of) indecomposable projective
A-modules

Lemma 23. Let A be an Artin algebra and S be a simple A-module. For each integer k 6= −1, 0,
the complex M = S ⊕ S[2k + 1] has the property that [M ] = 0 in K0(D

b(A −mod)), but it is not a
∆-degeneration of zero: 0 6≤∆ M .

Proof. Note that the homology module Hi(M) is zero, except for i = 0 and i = −2k − 1. If there is
a distinguished triangle

Z
f // Z // M // Z[1]

in Db(A−mod), the associated sequence of homologies gives an exact sequence

0 // H0(Z)
H0(f) // H0(Z) // S // H1(Z)

H1(f) // H1(Z) // 0,

which forces H0(f) and H1(f) to be isomorphisms since they are a monomorphic and an epimorphic
endomorphism, respectively, of finite length modules. Therefore S = 0, and we get a contradiction.

�

Remark 24. Using Theorem 6 and Proposition 8 we see that in the situation of Lemma 23 the
relations “≤∆+ nil”, “≤∆”, and “≤cdeg” coincide.

Recall that, for a skeletally small triangulated category T , we denote by �∆+ nil the smallest
transitive relation on the set of isomorphism classes of objects in T containing ≤∆+ nil.

Proposition 25. Let A be any skeletally small abelian category for which Db(A) is well-defined, i.e.
it has Hom sets as opposed to proper classes, and let us identify A with the subcategory of Db(A)
consisting of objects X such that Hi(X) = 0, for i 6= 0. The following assertions hold:

(1) If Y ≤∆+nil X in Db(A) and X ∈ A, then Y ∈ A.
(2) If there is an object in A which has a monomorphic endomorphism which is not an isomor-

phism, then there is an object X in T := Db(A) such that 0 ≤∆ X (and hence [X ] = 0 in
K0(T )), but 0 6�∆+nil X.

Assertion 2 includes in particular the case of the category A = R − mod of finitely generated
R-modules, when K is a integral domain and R is a noetherian K-algebra which is torsion-free as a
K-module and does not contain the field of fractions of K as a subalgebra.
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Proof. (1) Let us consider a distinguished triangle

W

(

v
α

)

// W ⊕ Y // X // W [1]

in Db(A), where v is a nilpotent endomorphism of W and X ∈ A. The long exact sequence of
homologies gives that

Hj(W )

(

Hj(v)
Hj(α)

)

// Hj(W )⊕Hj(Y )

is an isomorphism, for j 6= 0, 1, and there is an exact sequence

0 // H0(W )

(

H0(v)
H0(α)

)

// H0(W )⊕H0(Y ) // X // H1(W )

(

H1(v)
H1(α)

)

// H1(W )⊕H1(Y ) // 0

in A. Proving that Y has homology concentrated in zero degree reduces to prove that if

(
w
g

)
: A −→

A⊕B is an epimorphism in A, for some objects A,B ∈ A, where w is a nilpotent endomorphism of
A, then A = B = 0. This is clear when w = 0. But if w 6= 0 and m is the nilpotent index of w (i.e.
wm = 0 6= wm−1), then the composition

A

(

w
g

)

// A⊕B
(wm−1 0)

// A

is the zero map, which implies that wm−1 = 0, thus yielding a contradiction.

(2) Let f : Z −→ Z be a monomorphic endomorphism which is not an isomorphism and put
X = coker(f). We then have an induced distinguished triangle

Z
f // Z // X // Z[1]

in Db(A), thus showing that 0 ≤∆ X = X [0] in the later triangulated category. Suppose now that
0 �∆+nil X . Then we have a sequence 0 = X0, X1, . . . , Xn = X in Db(A) such that Xi−1 ≤∆+nil Xi

and Xi 6= 0 for i = 1, . . . , n. By assertion 1, we know that all Xi are in A. Replacing X by X1 if
necessary, we get an object X 6= 0 of A such that 0 ≤∆+nil X in Db(A). We can fix a distinguished
triangle

Q
u // Q // X // Q[1]

in Db(A), where u is a nilpotent endomorphism of Q. The long exact sequence of homologies gives
then an exact sequence

0 // H0(Q)
H0(u) // H0(Q) // X // H1(Q)

H1(u) // H1(Q) // 0

in A. But it is obvious that a nilpotent endomorphism of an object A′ ∈ A can be a monomorphism
or an epimorphism only in case A′ = 0. We then get Hj(Q) = 0 for j = 0, 1, which in turn implies
X = 0 and hence a contradiction.

Finally, suppose now that R−mod is the category of finitely generated modules over a noetherian
K-algebra R as indicated in the last statement of the proposition. Since the field of fractions of K is
not a subring of R, there must be a λ ∈ K \{0} such that λR ( R. Due to the torsion-free condition
of R as a K-module, multiplication by λ gives a monomorphism u = uλ : R −→ R in R−mod which
is not an epimorphism. �

Example 26. Note that Proposition 25 shows that the stalk complex Z/pZ in Db(Z − mod) has
zero image in the Grothendieck group of the derived category and that 0 6�∆+ nil Z/pZ.

Remark 27. Proposition 25 shows that being degeneration of zero is strictly stronger than having
zero image in the Grothendieck group.
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