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Título: El pequeño impacto del “haqueo” de resultados marginalmente 
significativos sobre la estimación meta-analítica del tamaño del efecto. 
Resumen: La etiqueta p-hacking (pH) se refiere a un conjunto de prácticas 
oportunistas destinadas a hacer que sean significativos algunos valores p 
que deberían ser no significativos. Algunos han argumentado que debemos 
prevenir y luchar contra el pH por varias razones, especialmente debido a 
sus posibles efectos nocivos en la evaluación de los resultados de la investi-
gación primaria y su síntesis meta-analítica. Nos focalizamos aquí en el 
efecto de un tipo específico de pH, centrado en estudios marginalmente 
significativos, en la estimación combinada del tamaño del efecto en el me-
ta-análisis. Queremos saber cuánto deberíamos preocuparnos por su efecto 
de sesgo al evaluar los resultados de un meta-análisis. Hemos calculado el 
sesgo en una variedad de situaciones que parecen realistas en términos de 
prevalencia y de la definición operativa del pH. Los resultados muestran 
que en la mayoría de las situaciones analizadas el sesgo es inferior a una 
centésima (± 0.01), en términos de d o r. Para alcanzar un nivel de sesgo de 
cinco centésimas (± 0.05), tendría que haber una presencia masiva de este 
tipo de pH, lo que parece poco realista. Hay muchas buenas razones para 
luchar contra el pH, pero nuestra conclusión principal es que entre esas ra-
zones no se incluye que tenga un gran impacto en la estimación meta-
analítica del tamaño del efecto. 
Palabras clave: p-hacking; tamaño del efecto; meta-análisis. 

  Abstract: The label p-hacking (pH) refers to a set of opportunistic practices 
aimed at making statistically significant p values that should be non-
significant. Some have argued that we should prevent and fight pH for sev-
eral reasons, especially because of its potential harmful effects on the as-
sessment of both primary research results and their meta-analytical synthe-
sis. We focus here on the effect of a specific type of pH, focused on mar-
ginally significant studies, on the combined estimation of effect size in me-
ta-analysis. We want to know how much we should be concerned with its 
biasing effect when assessing the results of a meta-analysis. We have calcu-
lated the bias in a range of situations that seem realistic in terms of the 
prevalence and the operational definition of pH. The results show that in 
most of the situations analyzed the bias is less than one hundredth (± 
0.01), in terms of d or r. To reach a level of bias of five-hundredths (± 
0.05), there would have to be a massive presence of this type of pH, which 
seems rather unrealistic. We must continue to fight pH for many good rea-
sons, but our main conclusion is that among them is not that it has a big 
impact on the meta-analytical estimation of effect size. 
Keywords: p-hacking; effect size; meta-analysis. 

 
Introduction 

 
In the past decade there has been much discussion about so-
called questionable research practices (QRPs), a set of behaviors of 
scientists that distort the research process and bias the re-
sults (Bakker et al., 2012; DeCoster et al., 2015; Earp & 
Trafimow, 2015; Pashler & Harris, 2012). Many claim that 
QRPs are a major threat to the validity of the conclusions of 
research. Its consequences occur both when conducting 
primary research and when doing meta-analytical reviews. 

Several expressions have been used to refer to the QRPs, 
but recently the term p-hacking (pH) has been used to de-
scribe a set of problematic practices that can lead to system-
atic bias in conclusions based on published research (Simon-
sohn et al., 2014a). One result of pH is to select those statis-
tical analyses that lead to non-significant p-values being 
transferred to the region of statistical significance. In practi-
cal terms, a result that should have an associated p-value 
greater than the level of significance (α) ends up having a p-
value below that threshold. 

Beyond fraudulent behaviors, such as intentionally fabri-
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cating or falsifying data (Stricker & Günther, 2019), QRPs 
are psychologically more “tolerable”. They consist of means 
to “cook” the data by transforming them in various ways, 
analyzing them with several alternative statistical techniques, 
analyzing multiple indicators without informing readers of 
failed methods, performing non-programmed intermediate 
statistical analyses, selectively eliminating participants, etc. 
(Fanelli, 2009; Hall & Martin, 2019; John et al., 2012). If in-
stead of reporting the result of the “normal” analyses, these 
practices are carried out with the aim of finding a p-value be-
low α, but without informing readers of the steps taken to 
produce such results, these procedures inevitably produce 
two consequences. First, the false positives rate is inflated 
beyond its nominal value (Bakker et al., 2012; Ioannidis & 
Trikalinos, 2007; van Assen et al., 2015), and second, in 
global terms the results finally reported overestimate the par-
ametric effect size (ES) (Kraemer et al., 1998; Lane & Dun-
lap, 1978). 

We know that different types of QRP's can produce 
somewhat different biases (e.g., Ulrich & Miller, 2015). We 
are going to focus on those forms of QRP in which, in view 
of a marginally significant result, the researcher does not 
stop the analysis, but performs actions aimed at obtaining a 
significant result. Typically, increase the sample and reana-
lyze (Botella et al., 2006), or analyze sequentially with alterna-
tive statistical techniques or transformations. 

The use of pH has received considerable attention in re-
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cent years, in the context of the so-called crisis of confidence in 
psychology (Baker, 2016; Earp & Trafimow, 2015; Pashler & 
Harris, 2012; Pashler & Wagenmakers, 2012; Yong, 2012). 
Of course, the focus has been on the biasing effects of pH 
on the conclusions of single studies. However, a logical ex-
tension of those worries is the concern about the potential 
effects on the conclusions of the meta-analyses carried out in 
research fields where there is a detectable pH activity. The 
pH activity in the primary studies could have a kind of dom-
ino effect on the meta-analyses that synthesize those studies. 

We must prevent and fight QRPs for several good rea-
sons, which we will discuss later. These arguments refer 
above all to the harmful effects that the results of primary 
studies contaminated by QRPs can have on their own as well 
as on the advancement of a scientific field such as psycholo-
gy. However, we will argue that pH (at least the type of pH 
we are focusing on here) does not have an important impact 
on the combined estimate of ES calculated in meta-analyses. 
In fact, its quantitative impact on meta-analytical estimates is 
rather small. Our goal in this article is to support the conclu-
sion that calculating the impact of a specific type of pH over 
a range of meta-analytical conditions can be demonstrated to 
be surprisingly small to the point of insignificance. To ad-
vance the main argument, the reason why the impact of this 
type of pH on the meta-analysis is small is twofold: (a) the 
probability that a given study has been subjected to pH such 
that its results are consequently modified, is relatively small, 
and (b) the impact of the distortion produced by those few 
studies in the overall estimation of the population ES is also 
correspondingly small. 

 

Assessing the prevalence of pH 
 

There are two main sources of evidence for the existence of 
pH: surveys of researcher practices and statistical analyses of 
the empirical distributions of ES estimates. Fanelli (2009) 
performed a meta-analysis of 18 surveys of researchers about 
their own behavior regarding QRPs, and about those of close 
colleagues. The results showed that QRPs are present in all 
scientific branches, with different degrees of prevalence. Un-
fortunately, the responses also indicate that a non-negligible 
number of researchers do not perceive some of these QRPs 
as particularly dishonest. The conclusion is clear: QRPs exist 
and their presence is not negligible (see, for example, the fig-
ure 1 of Brodeur, Lé, Sangnier & Zylberberg, 2016; or those 
of Krawczyk, 2015). However, the prevalence estimates vary 
widely, depending on the method used and the field and sub-
field analyzed (Banks et al., 2016; Head et al., 2015). 

Several statistical procedures have been proposed to test 
for the presence of pH in a given empirical distribution of p-
values. On the one hand, the transfer of p-values between 
regions should be visible in the form of an over-abundance 
of studies in the region of significant values adjacent to non-
significant values (for example, .03 - .05). Similarly, in the ar-
ea of p-values on the other side of the threshold (just above 
α; for example, .05 - .07) there must be an equivalent short-

age of studies. On the other hand, we should notice an over-
abundance within the area of significant p-values adjacent to 
the threshold with respect to other more remote areas, ac-
cording to the p-curve model fitted. These trends are repre-
sented in Figure 1, which shows the smoothed difference be-
tween the expected frequency of p-values within the range 0 
< p ≤ .10 in the absence of pH and with a transfer of p-
values from the range .05 < p ≤ .10 to the range .025 < p ≤ 
.05. There is an abrupt step in the threshold value of statisti-
cal significance (typically, .05). Depending on the size of the 
step, the practical effect of pH on the combined estimate of 
ES will be greater or lesser. 
 

 
Figure 1. Expected distribution of p-values with and without the effect of 

pH. 
 

The effects of pH are hardly detectable in empirical dis-
tributions of p-values, since the effects of publication bias (PB) 
mask them (Francis, 2012). The PB against non-significant 
studies is another threat that biases the combined estimates 
of the population ES. It is a real and important threat to the 
validity of conclusions based on meta-analyses that has been 
well studied and documented for decades (Mueller, 2018; 
Rothstein et al., 2005; Schneck, 2018; van Aert et al., 2019). 
Graphically, PB produces a step in the expected distribution 
of p-values that can be very similar to that produced by pH. 
A practical difficulty in assessing the effects of pH with real 
databases is that, in the scientific fields in which we detect 
the presence of pH, a significant presence of PB is also often 
detected (e.g., Head et al., 2015; Krawczyk, 2015). Both fac-
tors, pH and PB, can be reflected in abrupt changes in the 
distribution of p-values around the threshold (Figure 1), be-
tween those categorized as significant and those that are not 
(typically α = .05), so that their effects are easily confused 
(Leggett et al., 2013). Consequently, in the calculations that 
follow, we assume analytic scenarios in which there is pH but 
no PB. In this way, we can assess the pure effect of pH. 
Even so, we will also see the effect of pH when meta-analytic 
methods are applied only to significant studies, as a way to 
protect against PB. We will see how large the effect of pH is 
on the estimation of ES when a method such as p-curve anal-
ysis is applied to the set of significant studies (Simonsohn et 
al., 2014b). 
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Several studies have assessed the presence of pH in the 
literature. Head et al. (2015) used data mining techniques to 
extract distributions of p-values from a variety of scientific 
fields, and they concluded that pH effects are pervasive (but 
see Hartgerink, 2017). Brodeur et al. (2016) estimated that in 
the field of economics there is a transfer of between 10% 
and 20% studies from the area of marginally significant to 
that of significant. 

The analysis of the p-values reported in more than five 
thousand articles in experimental psychology journals re-
ported by Krawczyk (2015) reveals several interesting fea-
tures. Of course, there are anomalies in the empirical p dis-
tribution. However, along with an over-abundance of values 
that are significant but close to the limit of that region (for 
example, below .05 but close to it), there is also an even 
greater over-abundance of values above but also very close 
to the threshold of significance (for example, above .05 but 
close to it). The interpretation of this pattern is not clear. 
However, since these anomalies could be due to several fac-
tors, especially PB, they seem to indicate that pH as such 
should have had a rather small incidence in the observed dis-
tribution of p-values (see Krawczyk, 2015, Figures 3 and 4). 

Bishop and Thompson (2016) have studied the presence 
of anomalies in p-value distributions through simulations and 
a re-analysis of the data by Head et al. (2015). They conclude 
that neither the absence of a bump in the p-curve is indica-
tive that there is no pH, nor is its presence undoubtedly as-
sociated with a distribution contaminated by p-values from a 
nongenuine origin. To reach a sound conclusion, you must 
assume a specific QRP. In their work they focus on what 
they call ghost variables, which translate into the parallel 
analysis of various outcome variables, reporting only the one 
that is most favorable to the researcher's hypothesis. This 
form of QRP is very difficult to detect. 

Although these studies provide evidence of the presence 
of pH, and some even estimate its prevalence, most of them 
do not calculate its quantitative impact on the meta-analytical 
combined estimate of the ES. They only assess distribution 
anomalies by testing the null hypothesis of non-pH. Simon-
sohn, Nelson and Simmons (2014a) concluded that it is very 
unlikely that in a wide range of credible conditions pH is able 
to yield a non-existing effect. We believe that we must go 
beyond knowing how probable it is that pH turns a null ef-
fect into an incorrect, non-null effect. We want to calculate 
the impact of a specific type of pH on the combined estima-
tion of ES to know how much we should worry about its bi-
asing effects when assessing the results of a meta-analysis. 
Specifically, the type of pH that consists of selecting those 
statistical analyses that lead to p-values in the region some-
times referred to as "marginally significant" being transferred 
to the region of statistical significance1.2As we have already 

 
12Our operational definition is associated to the .05 value as the threshold 
for significance, since it is the most typical alpha level in psychology. In dis-
ciplines like pharmacology the typical level of significance is smaller (.01 or 
even less), while in others like marketing and other branches of economics 
and sociology it is not uncommon for alpha to be set at .10. 

suggested, our hypothesis is that although we must protect 
our research and actively fight pH for several reasons, the es-
timated effect of this specific type on the combined estima-
tion of the ES in meta-analysis is very limited. 

 

Method 
 

In what follows we have limited ourselves for simplicity of 
exposure to one-sided tests with α = .05 and a normally dis-
tributed test statistic. All arguments generalize to two-sided 
tests and to other values of α. Likewise, we have assumed 
that all studies have the same sample size. Of course, in real 
research, the sample sizes vary among the studies, but by as-
suming equal sizes we simplify the calculations without af-
fecting the conclusions. To calculate the effect of pH on the 
ES estimation we used a linear combination of the expected 
values of the test statistic, conditionalized on specific ranges 
of values obtained in the statistical test. For example, if the 
statistic tested under the null hypothesis follows a normal 
distribution, we can obtain its expected value conditionalized 
on being less than 1.645 (not significant; p > .05) and on be-
ing equal to or greater than 1.645 (significant; p ≤ .05). If we 
also know the probabilities that the values fall within each of 
these regions, the total expected value can be obtained by 
weighing the partial expected values with their correspond-
ing probabilities. The expected conditionalized values are 
easily obtained from the truncated normal distribution 
(Johnson, Kotz, & Balakrishnan, 1994, chap. 13). Specifical-
ly, the expected value of the test statistic, T, is, 
 
( ) ( ) ( )1.645 ( 1.645) 1.645 ( 1.645)E T P T E T T P T E T T=    +   

 
Let’s see a simplified, non-realistic example of how we 

are going to do the calculations, with only two regions, alt-
hough in the real calculations later we will define a more 
complex and realistic scenario. If, for example, we randomly 
transfer studies (with a probability of .50 that a study is 
transferred) from the region with p > .05 to the region with p 
≤ .05, the expected value after these transfers is obtained by 
recalculating the weights (probabilities) of the conditional 
expected values. In order to assess the effects of pH in terms 
of transfers of observations between regions (Figure 2), we 
will also make two instrumental assumptions. The first states 
that the probability of transferring a specific study from one 
region to another is uniform within the region of origin. 
That is, the probability of transferring, through QRPs, an ob-
servation with a p-value of (say) between .05 and .10, is the 
same for all studies performed while p is within that range. 

The second instrumental assumption states that when 
transferring studies with .05 < p ≤ .10 to the region with 
.025 < p ≤ .05, the expected value of T is approximately the 
same as that for studies with genuine p-values in that region. 
These two instrumental assumptions are set to facilitate cal-
culations. Moderate deviations from them do not generate 
large differences in the results, whereas other approaches re-
quire rather arbitrary assumptions. 
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In Figure 2 we see that the values that define several re-
gions in the right tail of the distribution of the test statistic 
under the null hypothesis also define different regions in the 
true distribution, which is that to the right (with δ > 0). If we 
operationally define pH as a transfer (represented by the ar-
row) of cases from the “marginally significant” region to the 
“significant” region closest to the significance threshold, we 
can calculate the expected value of the test statistic and, 
therefore, the bias produced by a pH of such magnitude. 
Specifically, we have assumed that there is a probability, q, 
that a value in the region defined as .05 < p ≤ .10 (that is, 
1.280 ≤ T <1.645) is transferred to the region .025 < p ≤ .05 
(that is, 1.645 ≤ T <1.96). We have calculated the effect of 
these transfers with conditional probabilities of up to q = 
.50. This implies a maximum in which half of the results 
with marginally significant p-values end up being significant 
after being submitted to QRPs. The percentage of explorato-
ry studies submitted to QRPs may be higher, but only a part 
(up to 50% of those judged to be marginally significant in 
our calculations) end up being reported with a statistically 
significant p-value. We believe that even this estimate is high 
and that in real contexts it is probably smaller than this max-
imum (Banks et al., 2016; Fanelli, 2009; Fiedler, Schwarz, 
2016; John et al., 2012; Martinson et al., 2005). For example, 
in their analysis of research published in the field of eco-
nomics Brodeur et al. (2016) estimate that those transfers 
represent between 10% and 20% of marginally significant 
studies. A survey by Martinson, Anderson and De Vires 
(2005) found that the self-reported frequencies of incurring 
QRPs are typically less than 15%. In other analyses, it is as-
sumed that 100% of the nonsignificant studies are subjected 
to pH (Simonsohn et al., 2014b), a prevalence that seems ex-
aggerated2.3 

 
Figure 2. Regions for the statistical test value under the null (left curve) and 
under the true value (right curve) hypotheses. The letters represent the four 
regions of the true distribution: A (not significant), B (marginally signifi-
cant), C (significant with high p) and D (significant with low p). The arrow 
represents the transfer of studies with marginally significant p values to the 
region with significantly associated p values but close to the threshold de-
fined by α. 

 
We have worked with Cohen's d as our effect size index, 

with two sample sizes that reflect a typically small size in 
psychology (two groups of 15) and a typically moderate size 
(two groups of 30) (Marszalek et al., 2011; Rubio-Aparicio et 

 
23If 100% of the researchers were active practitioners of the QRPs, our dis-
cipline would have reached a level of corruption that would advise forget-
ting preventive measures and instead close the business and start from the 
scratch. 

al., 2018). With larger samples, the effects of pH tend to be 
even smaller. 

The δ values selected (besides 0 for non-effect) are 0.2, 
0.5 and 0.8, generally used since Cohen (1988) to designate 
small, moderate and large standardized mean differences (see 
also Rubio-Aparicio et al., 2018). 

Let us see with a detailed example how we have per-
formed our calculations in the condition with δ = 0.80 and 
N = 15 (see in Appendix S1, supplemental material, the R 
syntax that allows to reproduce the calculations reported for 
this and all other conditions). The expected conditional val-
ues have been obtained through the truncated normal distri-
bution. The probability that a study yields a result that is nei-
ther significant nor marginally significant (T < 1.28; region A 
in Figure 2) is .1904, and the expected value of T for that set 
of studies is 0.708. The probability and the expected value of 
significant studies with p ≤ .025 (region D in figure 2) are 
.5879 and 2.879, respectively. These two sets of studies are 
those not affected by the transfer represented by the arrow 
in Figure 2. The probability that in the test of the null hy-
pothesis, the T value is in the region of "marginally signifi-
cant" (1.280 ≤ T <1.645; region B in Figure 2) is equal to 
.1093, and its expected conditional value is 1.47. Finally, the 
probability that the p-value remains in the region of signifi-
cant values with high p-values (.025 < p ≤ .05; region C in 
Figure 2) is equal to .1124 and the conditional expected val-
ue of T is 1.806. The total expected value of T in the absence 
of pH would be: 

 
( ) .1904 0.708 .1093 1.47 .1124 1.806 .5879 2.879 2.1911E T =  +  +  +  =

 
Of course, the expected value of d is E(d) = E(T)·sqrt 

(2/N) = 2.1911·sqrt(2/15) = 0.800. Let us now see what 
happens in this body of research if the magnitude of pH is 
set to 50% of the marginally significant studies (q = .5), be-
coming significant with high p-values (between .025 and .05). 
Half of the studies within that range of p-values (.1093 / 2 = 
.0546) are transferred to the adjacent area (region C). The 
expected value of T with that level of pH is: 

 
( ) .1904 0.708 .0546 1.47 (.1124 .0546) 1.806 .5879 2.879 2.2093E T =  +  + +  +  =

 
Then, E(d) = 2.2093·sqrt(2/15) = 0.807. The magnitude 

of the bias produced by this degree of pH in this analytic 
scenario is 0.807 - 0.800 = 0.007. 
 

Results and discussion 
 
Table 1 shows the main results in terms of the expected val-
ues of d for the different conditions. In each case, the bias is 
the difference between the value within the table and the 
true value of δ. In all conditions the bias is less than one 
hundredth: │E(d) - δ│ < 0.01. The greatest biases occur 
with the smallest sample size (N = 15). The magnitude of 
the bias effect is generally small and, in many conditions, 
negligible (less than ± 0.005). We can state that pH is not 
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likely to have a relevant quantitative impact on the estima-
tion of ES, at least for the conditions studied here. It is easy 
to understand the two reasons why the impact is small. On 
the one hand, the probability that a study is subject to QRPs, 
and the results transferred from the region of marginally sig-
nificant (region B) to a significant one with high p-values 
(region C, p-values between .025 - .05), is small. On the other 
hand, the conditional expected values of the test statistic in 
those two adjacent regions are very close. Let us return to 
the example with δ = 0.80 and N = 15. The probability that 

a value of T falls in the region of “marginally significant” 
(1.280 ≤ T <1.645) equals .1093, so the maximum transfer 
we have contemplated (q = .50) would eventually be, in the 
long run, only 5.46% of the studies carried out. These trans-
ferred studies would have a mean value of T = 1.47 (d = 
0.54) in the long run before being subjected to pH, while af-
ter that process their average value would be T = 1.81 (d = 
0.66). However, the vast majority of studies (in the long run 
100 - 5.45 = 94.54%) would not change their associated val-
ues of T (and d). 

 
Table 1. Expected values of d for the studied conditions, according to the parametric values (δ), the sample sizes (N), and the probabilities of transferring a 
“marginally significant” study to a significant one (q). 

 δ = 0 δ = 0.20 δ = 0.50 δ = 0.80 

q N=15 N=30 N=15 N=30 N=15 N=30 N=15 N=30 

.00 0 0 0.200 0.200 0.500 0.500 0.800 0.800 

.05 0 0 0.201 0.200 0.501 0.501 0.801 0.800 

.10 0.001 0.000 0.201 0.201 0.502 0.501 0.801 0.800 

.15 0.001 0.001 0.202 0.201 0.503 0.502 0.802 0.800 

.20 0.001 0.001 0.202 0.202 0.503 0.502 0.803 0.801 

.25 0.002 0.001 0.203 0.202 0.504 0.503 0.803 0.801 

.30 0.002 0.001 0.204 0.203 0.505 0.503 0.804 0.801 

.35 0.002 0.002 0.204 0.203 0.506 0.504 0.805 0.801 

.40 0.003 0.002 0.205 0.204 0.507 0.504 0.805 0.801 

.45 0.003 0.002 0.205 0.204 0.508 0.505 0.806 0.802 

.50 0.003 0.002 0.206 0.205 0.509 0.506 0.807 0.802 

 

Generalizing to other conditions 
 

We want to know whether our conclusion is valid only for 
the conditions studied until here, and whether it will change 
significantly in other analytic scenarios. We review the main 
factors that could affect the conclusions and discuss their 
potential effects. 

(a) Values of δ. The ES values chosen for δ are those that 
Cohen proposed as typically small, medium and large ESs. 
They cover a wide range of representative values of the ef-
fects studied by psychologists (Bosco et al., 2015; Richard et 
al., 2003; Rubio-Aparicio et al., 2018). As the bias reduces 
from when δ equals 0.50 to 0.80, the tendency is that with 
values greater than 0.80 the bias will be even lower. 

(b) Sample size. Sample size does not seem to be a rele-
vant factor, since with N = 15 and N = 30 the results are 
very similar. With N > 30 the results will be very stable and 
will show even smaller biases. It is possible that with groups 
smaller than 15 there is a greater difference, but these sample 
sizes are not very frequent in psychology, and when they are 
used, the data are often analyzed with non-parametric tech-
niques. Even so, we have made the calculations with δ = 
0.50 and two groups of N = 10. The results are essentially 
the same, reaching one hundredth of bias only when q = .50. 

(c) The effect size index. Our calculations refer to δ, the 
standardized mean difference. We ask ourselves whether the 
conclusions are generalizable to other ES indices. We have 
made the calculations assuming that the test statistic is nor-
mally distributed, so they should be similar for other statis-
tics that have approximate normal distributions. To calculate 

the bias with other indices, we simply use the corresponding 
formulas. For example, for Pearson's correlation we have 
used the values suggested by Cohen for a small, medium and 
large correlation (rho = .10, .30, and .50; see also Richard, 
Bond, & Stokes-Zoota, 2003) transformed to Fisher's Z and 
with samples of size 15 and 30. The results appear in Table 
S1 (tables S1 to S6 are included in the supplemental materi-
al). In all conditions the bias is less than one hundredth, 
│E(r) - ρ│ < 0.01. In the majority they are less than half a 
hundredth, although to reach that value the percentage of 
transfers must reach 50% and the sample must be small (N 
= 15). Therefore, we can generalize our main conclusion to r 
as the ES index: the quantitative impact of pH over a wide 
range of credible conditions is also very small for Pearson's 
correlation, and is negligible in practical terms. 

(d) The statistical model. We have made our calculations for 
simplicity under a fixed effect model, although psychologists 
rarely use it. The random effects model is generally consid-
ered more realistic (Borenstein, Hedges, Higgins, & Roth-
stein, 2010). In order to show that our main result does not 
depend on the assumed model, we have performed a Monte 
Carlo simulation (see the syntax code in appendix S2 in the 
supplemental material). We have generated 100,000 samples 
for each condition. For the conditions, we have defined four 
mean ES values (0, 0.20, 0.50, and 0.80) and three repre-
sentative variance values (0.05, 0.10, and 0.15) (Rubio-
Aparicio et al., 2018). By crossing the 12 conditions with the 
same pH levels as in the other sections, we have obtained the 
results of table S2. As can be seen, the levels of bias are still 
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very low; in no case does the mean bias reach one hun-
dredth. 

(e) Broadening the operational definition of marginally significant. 
We have defined pH as illegitimate transfers of results from 
the region in which .05 < p ≤ .10 to that of .025 < p ≤ .05. 
We believe this is a reasonable operationalization of pH, but 
one could ask how much the bias will change if we extend it, 
for example to the region of .05 < p ≤ .20 (i.e. 0.84 ≤ T 
<1.645). Table S3 shows the level of bias obtained with this 
new operational definition of pH. Beyond the modification 
in the operational definition of "marginally significant", the 
rest of the conditions are the same as in the calculations in 
Table 1. 

With such a broad definition of pH, we obtain again 
small levels of bias. The bias exceeds two hundredths only in 
a few conditions, especially with small samples (N = 15) and 
high percentages of transferred studies (q > .30). Only in one 
of the conditions does it reach three hundredths (δ = 0.50; 
N = 15; q = .50). 

(f) Variations in the sample sizes. To facilitate the calcula-
tions, we have assumed that the sample sizes of the studies 
are constant (N = 15 or N = 30), arguing that if they were 
variable, the results would not change significantly. In order 
to avoid any doubt in this regard (and following the sugges-
tion of a reviewer) we have used a simulation methodology 
to recalculate the bias in such circumstances (see supple-
mental material). Specifically, we have generated 100,000 
samples for each condition, associating to each one a ran-
dom sample size, following the distribution proposed by 
Rubio-Aparicio et al., 2018). As expected, the results (Table 
S4) show that the size of the bias does not depend on 
whether the sample sizes vary. With variable sample sizes the 
bias is still very small. 

(g) The meta-analytical strategy. The pH has been studied 
through empirical distributions of ES estimates, probably al-
ready affected by PB. This has probably led to thinking of it 
more in terms of the combined effect of both factors than in 
the isolated effect of pH. When PB exists and we ignore it, 
the combined estimate may suffer significant distortions 
(e.g., Carter, Schönbrodt, Gervais, & Hilgard, 2019). An effi-
cient strategy to avoid the effects of PB is to analyze only 
significant studies, if a reasonable number of these are avail-
able (Simonsohn et al., 2014a; van Assen et al., 2015). It is 
assumed that PB increases the frequency of studies with 
non-significant results that remain in the file-drawer but does 
not affect the number of significant ones. Therefore, we cal-
culate also the effect that pH, as we have defined it, would 
have on combined estimates that are carried out under the 
strategy of including only significant studies, such as with the 
p-curve method. 

We have used the function of the p-curve generated from 
a statistical test normally distributed (Ulrich & Miller, 2018, 
equation 7), restricted to the range of significant p values 
(left half of Figure 1, without pH). We have recalculated the 
density of each value under different probabilities of trans-
ferring a result with a p value between .10 and .05 to the re-

gion between .05 and .025 (again with values of q from 0 to 
.50). With the new densities, we have fitted a curve with the 
same function. The values of the parameters thus obtained 
for different values of q appear in Table S5. It is clear that 
the bias can be very large, especially when the effect is null 
or small. Figure 3 shows the effect of pH when fitting a p-
curve. The original function is that of the left segment drawn 
with a continuous line. The pH is reflected in the increase in 
heights in the right segment. When we take the two seg-
ments and force a fit using a function like the original by 
least squares, the result is that of the figure drawn with a 
dashed line. This function appears above the original, before 
the effect of pH. As Simonsohn, Nelson and Simmons 
pointed out, the effect of pH when using p-curve is an under-
estimation of the parametric effect size. 
 

 
Figure 3. Effect of pH when fitting a p-curve. The dashed line (distribution 
of p values with pH) is divided into two segments. The one on the left is not 
affected by pH; the one on the right is elevated due to the transfer of p val-
ues (pH). The solid line represents the fitted function that provides the p-
curve from the two segments together. 
 

In summary, in this section we have shown that by 
changing the analytic scenario in several ways, the size of the 
bias remains small, and in most conditions it is negligible. It 
only increases appreciably when we extend the operational 
definition of "marginally significant" to the threshold p ≤ 
.20. On the other hand, it is much larger when using p-curve 
with only significant studies. Our conclusion is that the 
quantitative impact of this type of pH on the combined es-
timate of ES is generally small when the whole distribution is 
modeled. It is possible that in special circumstances the pH 
affects the empirical distribution of the ES values in a given 
body of studies more than in the scenarios analyzed here. 
However, in the vast majority of situations that we can real-
istically imagine, the impact is very small. To achieve a great-
er bias, we would have to assume much exaggerated condi-
tions. For example, with δ = 0.50 and N = 15 even if the 
percentage of marginally significant studies that end up being 
significant as a result of pH were 100%, the bias would still 
be less than 0.02. A bias of five hundredths, │E (d) - δ│ = 
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0.05, could be achieved, for example, if the marginally signif-
icant condition is extended to studies with .05 < p ≤ .30 (i.e., 
0.52 ≤ T <1.645) and it is assumed that 50% of these studies 
are converted to significant p-values through QRPs. These 
conditions involve a massive use of QRPs, which we do not 
believe realistically represent their prevalence in psychology. 

 

Comparing the magnitude of the effects of pH 
and PB 

 
Our main conclusion is that the magnitude of the effect of 
pH is generally small. Of course, the label "small" is ambigu-
ous; we have not defined operationally a priori what a "small" 
bias is. In most of the conditions analyzed, the bias is less 
than one hundredth. The indices of ES analyzed, d and r, are 
often reported to two decimal places. Then the smallest pos-
sible difference due to the effect of any factor is one hun-
dredth (and a bias smaller than ±.005 is negligible). That is 
why one hundredth is the unit of measure when evaluating 
our results. However, in order to assess the effects of pH in 
relative terms we have made an additional analysis, compar-
ing the quantitative effects of pH with those of PB, the main 
threat in meta-analysis. We have calculated the quantitative 
impact on the combined estimation of the ES when there is 
no pH, but there are different degrees of PB and we ignore 
its effects. Table S6 shows the size of the bias when a pro-
portion of non-significant studies is censored (they remain in 
the file drawer). For example, in the condition with δ = 0.50 
the bias that occurs when half of the non-significant studies 
remain in the file drawer (s = .50) is much greater than that 
produced by pH. This is a realistic imputation of the publica-
tion rate of non-significant studies.  If in this scenario the 
probability that the study provides non-significant results is 
.607 with N = 15, and, for example, 40% of them are cen-
sored, approximately one in every four studies carried out 
will remain in the file drawer (a very realistic situation; see, 
for example, the estimates of Franco et al., 2014). In this 
scenario, the expected value of d is 0.575. Comparing this 
level of bias with those of Table 1 for each condition, the 
conclusion is clear that the bias produced by PB (as defined 
here) is much greater than that produced by pH (as defined 
here). 

 

Some good reasons for preventing and 
fighting pH 

 
All our arguments lead to the conclusion that the magni-

tude of the impact of the type of pH we have focusing here 
on a meta-analysis when calculating combined estimates in a 
wide range of realistic situations is very small, even negligi-
ble. Of course, it is much smaller than the impact of PB of 
credible size. However, we do not want to convey the mes-
sage that we can stop worrying about this type of pH. Quite 
the opposite. In the previous section, we have explained the 
reasons why we believe that it is not necessary to worry very 

much about its impact on the combined estimates of the ES 
obtained by the meta-analyst. Nevertheless, pH has other 
consequences, especially when assessing the results of prima-
ry investigations by themselves. We present some good rea-
sons why we should worry about and prevent pH: 

(a) The researcher crosses the line of scientific ethics, 
turning his or her work into a game in which opportunistic 
behaviors are put to work for personal gain in terms of ca-
reer advancement. They reverse the priorities, putting per-
sonal profit ahead of the progress of knowledge acquired 
through a rigorous application of the scientific method (De-
Coster et al., 2015). From a qualitative perspective, any prev-
alence of QRPs will be always too much. Furthermore, it is 
worrying that the presence of cues of QRPs is increasing, 
probably because the pressure to publish has been growing 
in the last two decades (De Winter & Dodou, 2015; Holt-
freter et al., 2019; Leggett et al., 2013). 

(b) A falsely significant result may be confusing for other 
researchers, encouraging hypotheses without sufficient sup-
port that justifies following them with new research, thus 
wasting time and resources. 

(c) The presence of QRPs reduces the confidence of re-
searchers in previously published results. Science should be a 
cooperative task of honest collaboration among scientists. If 
this confidence is impaired, researchers feel the need to test 
the results of other researchers before accepting them as val-
id, wasting their time and investing additional resources un-
necessarily. 

(d) The same happens to professionals who could apply 
the advancements provided by scientists. They can reduce 
the amount of transfers to their professional practices if they 
do not fully trust the process that led to the conclusions (in-
cluding results that are true and useful). 

(e) If QRPs are present and the society knows it, then 
public confidence in the value of science is eroded, and faith 
in scientific contributions is tainted to the extent that public 
policy is less influenced by research into significant problems 
like global warming, environmental contamination, and spe-
cies extinctions (Anvari & Lakens, 2019). 

(f) Confirmatory bias must be actively fought, rather than 
encouraged. Many young researchers normalize QRPs with-
out being aware of being influenced by confirmatory bias. 
Deep inside the human mind rests the idea that our percep-
tion is more objective than that of others (Ross, 2018) and 
from there it easily progresses to the idea that our percep-
tions and intuitions are more credible than our own data. In 
the end, QRPs are cynically justified as acceptable behavior 
for the sake of scientific progress. The need to confirm pre-
vious beliefs, plus poor methodological and statistical train-
ing, within a social context in which "alternative truths" and 
"alternative facts" are accepted and normalized, can lead re-
searchers to believe that what they do is correct. 

(g) Incorrect conceptualizations of research methodology 
and statistics can be perpetuated. For example, by fostering 
the belief that the use of small samples makes research more 
efficient in terms of speed of publication, or attaching exag-
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gerated importance to the observation that p < α. Research-
er’s ritualized behaviors can lead to incorrect interpretations, 
and the QRPs feedback those behaviors and pervasively rein-
force their ritualization. 

 
In summary, the arguments along this paper should not 

lead us to the conclusion that pH is not a big problem for 
science and that we can therefore ignore it. It has serious 
consequences, especially at the level of primary studies. 
Those consequences justify implementing measures to pre-
vent it (e.g., Botella & Duran, 2019; De Boeck & Jeon, 2018; 
Marusic, Wager, Utrobicic, Rothstein, & Sambunjak, 2016; 
Sijtsma, 2016; Simmons, Nelson, & Simonsohn, 2011). 
These resulting corrective proposals are promising. Extend-
ing their implementation will not only have a positive effect 
on scientific methodology alone. The mere fact that the so-
ciety knows that the scientific community has been alerted to 
potential problems and is more diligent in improving meth-
odological rigor will be an undoubted deterrent to reduce the 
prevalence of QRPs. 

On the other hand, not all practices labeled as QRPs are 
always bad practices. Using a label with such a negative load 
can also be confusing. For example, performing interim 
analyses of the data collected so far and deciding whether to 
continue adding participants according to the result, is not a 
bad practice by itself and could be more efficient. It is only a 
bad practice if the researcher does not disclose what has 
been done, and if it is done outside of some regulated pro-
cedure. We know regulated ways to do partial analyses, so 
that the rate of type I errors is not inflated (e.g., Botella et al., 
2006). Other types of pH, as analyzing the data in unex-
pected ways, is a source of discovery of unexpected patterns 
that enriches the process of science development (Wig-
boldus & Dotsch, 2016). If we eliminate these unscheduled 
analyses from the practices of scientists, much of what their 
creativity can contribute is lost. What is a QRP is not to do 
these analyses, but not to report their exploratory nature. 

 

Limitations 
 

It can be argued that our way of modeling pH is somewhat 
limited. Surely different QRP‘s have different effects. Se-
quential sampling and analysis (Botella et al., 2006) influ-
ences the p-curve in a different way to the parallel analysis of 
multiple dependent variables and the selection of the signifi-
cant ones (Ulrich & Miller, 2015), or to the application of 
various statistical techniques and reporting only the one that 
provides the most convenient value (e.g., Francis, 2012). 
Certainly, our way of modeling pH is very close to the first 
of these QRP’s, which seems to be one of the most frequent 
in some fields of psychology. It would be necessary to study 
other scenarios focused on other QRP’s, or even scenarios in 
which several or all are present at different rates. 

We have focused on the impact of pH in the absence of 
PB. In other recent studies, the focus has been on the com-
bined impact of both effects, especially on their interaction 

(e.g., Carter et al., 2019; Friese & Frankenbach, 2019). We 
believe that the scenario studied by us is interesting by itself. 
The argument for their combined study would be that it is 
more realistic, since both problems, pH and PB, are likely to 
be present in a particular field. Furthermore, it is sometimes 
argued that it is the presence of PB that encourages QRP’s as 
a means of getting a study published. This being true, we be-
lieve there are other motivations for pH. Many authors feel a 
certain intellectual, and even emotional, commitment to cer-
tain explanatory positions and models. Personal involvement 
with theories can also push QRP's in fields where there is no 
noticeable PB, where a non-significant result would have 
been published anyway. 

Furthermore, the fights against pH and PB are of a very 
different nature. We can implement mechanisms to achieve 
some control a priori of the studies, or plan massive replica-
tions, to avoid PB. We can also use subsequent analytical 
strategies that allow us to estimate and correct potential bias. 
However, QRP's are very difficult to control and their effects 
are difficult to correct. They often occur in the private do-
main of the researcher, or in his circle of trust. Our results at 
least show that if we can control and correct the PB, then we 
will not have to worry much about the quantitative impact of 
pH on the meta-analytical estimation. Our main message is 
that in the absence of PB the effect of pH in the meta-
analytical combined estimate is very small. Therefore, an ef-
ficient strategy to improve the scientific practices is to con-
centrate our efforts on PB. That said, we must not forget 
that the small magnitude of the bias we have calculated can 
become a much larger bias under more extreme (although 
less frequent and realistic) conditions. 

We have assumed two instrumental assumptions in our 
calculations. None of them has an empirical basis. The alter-
native to the first assumption would be to assume that with-
in studies with marginally significant results, the probability 
of being subjected to pH is greater the lower the p-value. 
However, any non-uniform function would be arbitrary, and 
the ones we have tested have not produced very different re-
sults. Even so, it is pending to try with some different func-
tions. The alternative to the second assumption would be to 
assume that the new values, after the transfer to the region 
of significant ones, are distributed in such a way that the 
conditioned expected value changes. Any specific function 
would be arbitrary and, again, the ones we have tested have 
not produced very different results. A systematic study of 
these alternative functions is pending. But we do not believe 
that reasonable deviations from these assumptions will sig-
nificantly change the results. 
 

Conclusions 
 
QRPs are a threat to the fairness when implementing the sci-
entific method in practice. We must fight them for several 
good reasons. However, our main conclusion is that among 
these reasons is not that they have a great impact on the me-
ta-analytical estimation of ES. Our calculations lead to the 
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conclusion that their real quantitative impact in a wide range 
of credible meta-analytical conditions is small. 

Several consequences derive from this conclusion. First, 
researchers should not use the detection of pH as a specula-
tive argument to justify deviations from the expected results. 
When they find deviations from what they expect larger than 
0.02 - 0.03 in terms of d or r, they will need alternative ex-
planations to the mere speculation that the source of the de-
viation could be pH without providing evidence that indeed 
it is. 

A second consequence is that the selection models for 
the study of PB do not need to include additional complica-
tions derived from this practice. Modeling PB is a complex 

task that requires considering multiple sources of distortion 
in the distribution of ES values (Hedges & Vevea, 2005; 
Rothstein, Sutton, & Borenstein, 2005). Our results show 
that pH is not in general a problem that we need to take into 
account in the development of the models, thus avoiding 
unnecessary additional complexities when modeling PB. 
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cessed at: https://osf.io/yc5tp/?view_only=906c8c4f86054efc87-
cf677c69a709be. This research was supported by the Ministerio de 
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