Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    New user? Click here to register.
Repository logo

Repositorio Institucional de la Universidad de Murcia

Repository logoRepository logo
  • Communities & Collections
  • All of DSpace
  • menu.section.collectors
  • menu.section.acerca
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    New user? Click here to register.
  1. Home
  2. Browse by Subject

Browsing by Subject "Membrane vesicles"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Open Access
    Horse adipose-derived mesenchymal stromal cells constitutively produce membrane vesicles: a morphological study
    (F. Hernández y Juan F. Madrid. Universidad de Murcia: Departamento de Biología Celular e Histología, 2015) Pascucci, L.; Dall’Aglio, C.; Bazzucchi, C.; Mercati, F.; Mancini, M.G.; Pessina, A.; Alessandri, G.; Giammarioli, M.; Dante, S.; Brunati, G.; Ceccarelli, P.
    Mesenchymal stromal cells (MSCs) are multipotent somatic cells that can differentiate into a variety of mature cell types. Over recent years, their biological in vitro and in vivo properties have elicited great expectations in the field of regenerative medicine, immunotherapy and tumour treatment. An increasing number of experimental observations suggest that their biological effects are probably related to a paracrine mechanism via the release of trophic factors and cytokines as well as through the production of membrane vesicles (MVs). These are nanometric membrane-bound structures, comprising shedding vesicles (SV) and exosomes (Ex), that enclose and transfer signalling molecules to target cells. We hypothesized that MVs may be implicated in the biological effects of MSCs from horse adipose tissue (EAdMSCs), a type of MSC that has been extensively studied in recent years for its remarkable efficacy in tissue regeneration. By means of electron microscopy, we ascertained, for the first time, that equine adipose-derived MSCs constitutively produce MVs (E-AdMSCs). The analysis of MVs separated by ultracentrifugation allowed us to describe their general morphological features. Through the examination of cell monolayers by TEM, additionally, we distinguished the different pathways of SV and Ex formation, demonstrating that both fractions are produced by E-AdMSC. The accurate description of MV heterogeneous morphological characteristics led us to emphasize the possible implications of the relationship between different morphologies versus different functions. The data presented in this paper has an additional value, as they can be noteworthy for horses as well as for other mammalian species, including humans.
  • Loading...
    Thumbnail Image
    Publication
    Open Access
    Membrane vesicles for nanoencapsulated sulforaphane increased their anti-inflammatory role on an In vitro human macrophage model.
    (MDPI, 2022-02-09) Yepes Molina, Lucía; Pérez Jiménez, María Isabel; Martínez Esparza, M.; Teruel, José A.; Ruiz Alcaraz, Antonio J.; García Peñarrubia, Pilar; Carvajal, Micaela; Bioquímica y Biología Molecular B e Inmunología
    At present, there is a growing interest in finding new non‐toxic anti‐inflammatory drugs to treat inflammation, which is a key pathology in the development of several diseases with considerable mortality. Sulforaphane (SFN), a bioactive compound derived from Brassica plants, was shown to be promising due to its anti‐inflammatory properties and great potential, though its actual clinical use is limited due to its poor stability and bioavailability. In this sense, the use of nanocarriers could solve stability‐related problems. In the current study, sulforaphane loaded into membrane vesicles derived from broccoli plants was studied to determine the anti‐inflammatory potential in a human‐macrophage‐like in vitro cell model under both normal and inflammatory conditions. On the one hand, the release of SFN from membrane vesicles was modeled in vitro, and two release phases were stabilized, one faster and the other slower due to the interaction between SFN and membrane proteins, such as aquaporins. Furthermore, the anti‐inflammatory action of sulforaphane‐loaded membrane vesicles was demonstrated, as a decrease in interleukins crucial for the development of inflammation, such as TNF‐α, IL‐1β and IL‐6, was observed. Furthermore, these results also showed that membrane vesicles by themselves had anti‐inflammatory properties, opening the possibility of new lines of research to study these vesicles, not only as carriers but also as active compounds.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Accessibility
  • Send Feedback