Browsing by Subject "Learning analytics"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- PublicationOpen AccessLa actividad de los participantes como fuente de información para promover la colaboración. Una analítica del aprendizaje basada en el modelo de Influencia Educativa Distribuida(Universidad de Murcia, Servicio de Publicaciones, 2017) Coll, César; Engel, Anna; Niño, ShamalyEste trabajo presenta la versión inicial de una analítica del aprendizaje inspirada en el modelo de influencia educativa distribuida (IED). La idea central del modelo de IED es que en las situaciones de trabajo y aprendizaje colaborativo todos los participantes son fuentes potenciales de ayuda para los otros participantes. Sobre esta base, se ha llevado a cabo una investigación con un triple objetivo: analizar el impacto de la información proporcionada a los participantes sobre el proceso colaborativo y su evolución, indagar si la información proporcionada tiene un efecto diferencial en función de su naturaleza y contrastar la utilidad de la analítica desarrollada para analizar los procesos de colaboración en línea. Para ello, se han seguido cuatro grupos de estudiantes que participan en una serie de foros en línea en el marco de una asignatura de máster. Los resultados indican que en general la información proporcionada a los participantes sobre su actividad tiene un impacto en el proceso colaborativo. No ha sido posible, en cambio, demostrar que la naturaleza de la información proporcionada tenga un impacto diferencial sobre el proceso de colaboración. Los resultados también han puesto de manifiesto algunas limitaciones de los indicadores en que se concreta la analítica desarrollada
- PublicationOpen AccessConstruir el conocimiento en la era digital : retos y reflexiones(Universidad de Murcia, Servicio de Publicaciones, 2022) Marimon-Martí, Marta; Cabero, Julio; Castañeda, Linda; Coll, César; Minelli de Oliveira, Janaina; Rodríguez-Triana, María JesúsEste trabajo identifica cinco grandes retos que enfrentan los modelos emergentes de construcción y creación de conocimiento en contextos digitales: la democratización de la educación y la toma en consideración de las cuestiones relacionadas con la diversidad en un sentido amplio; el impacto de la pandemia de la COVID-19 y sus implicaciones en lo que concierne a los usos de las TIC en la educación; la existencia de múltiples y diversos contextos de construcción y creación de conocimiento, su interrelación y su necesaria articulación; la curación de contenidos, su impacto en las prácticas educativas y sus implicaciones para la formación del profesorado y para el aprendizaje del alumnado; y las analíticas de aprendizaje y su papel en la toma de decisiones orientadas a mejorar la eficacia de la enseñanza y optimizar el aprendizaje. Estos cinco ámbitos son revisados así como sus aspectos más significativos, que deberían ser objeto de especial atención en la investigación y la innovación educativa en los próximos años. Se incluye, además, un anexo dedicado a presentar un glosario de algunos términos utilizados en el trabajo.
- PublicationOpen AccessData-driven detection and characterization of communities of accounts collaborating in MOOCs(Elsevier, 2021-12) Ruipérez Valiente, José A.; Jaramillo Morillo, Daniel; Joksimovic, Srecko; Kovanovic, Vitomir; Muñoz Merino, Pedro J.; Gasevic, Dragan; Ingeniería de la Información y las ComunicacionesCollaboration is considered as one of the main drivers of learning and it has been broadly studied across numerous contexts, including Massive Open Online Courses (MOOCs). The research on MOOCs has risen exponentially during the last years and there have been a number of works focused on studying collaboration. However, these previous studies have been restricted to the analysis of collaboration based on the forum and social interactions, without taking into account other possibilities such as the synchronicity in the interactions with the platform. Therefore, in this work we performed a case study with the goal of implementing a data-driven approach to detect and characterize collaboration in MOOCs. We applied an algorithm to detect synchronicity links based on their submission times to quizzes as an indicator of collaboration, and applied it to data from two large Coursera MOOCs. We found three different profiles of user accounts, that were grouped in couples and larger communities exhibiting different types of associations between user accounts. The characterization of these user accounts suggested that some of them might represent genuine online learning collaborative associations, but that in other cases dishonest behaviors such as free-riding or multiple account cheating might be present. These findings call for additional research on the study of the kind of collaborations that can emerge in online settings.
- PublicationOpen AccessEffects of solo vs. collaborative play in a digital learning game on geometry: results from a K12 experiment(Elsevier, 2020-12) Ruipérez Valiente, José A.; Kim, Yoon Jeon; Ingeniería de la Información y las ComunicacionesDigital games for learning are one of the most prominent examples of the use of technologies in the classroom, where numerous studies have presented promising results among children and adolescents. However, scarce evidence exists regarding different ways of implementing games within the classroom and how those affect students' learning and behaviors. In this study we explore the effect that collaboration can have in digital gameplay in a K12 context. More specifically, we have designed a 2 × 2 experimental study in which high school first year students participated in solo or collaborative gameplay in pairs, solving puzzles of diverse difficulty, using Shadowspect, a digital game on geometry. Our main results, computed by applying learning analytics on the trace data results, suggest that students playing solo had higher in-game engagement and solved more puzzles, while students collaborating were less linear in their pathways, skipping more tutorial levels and were more exploratory with Shadowspect features. These significant differences that we observe in solo and collaborative gameplay call for more experimentation around the effect of having K12 students collaborate on digital tasks, so that teachers can take better decisions about how to implement these practices in the classrooms of the future.
- PublicationOpen AccessHuellas de los estudiantes en las plataformas virtuales. Aplicación para evaluar una metodología de aprendizaje activo.(Universidad de Murcia, 2019) Iglesia Villasol, María Covadonga de laThe orientation of the Spanish educational system towards teaching-learning scenarios that transcend the walls of physical classrooms towards virtual platforms, opens asynchronous learning channels, and leads to rethinking how students learn, what uses they make of virtual platforms, how they interrelate with them and with each other, and how they acquire knowledge and develop competences. The work addresses the implementation of the Learning Based on a Teaching Project (ABPD) methodology through the descriptive analysis of the uses and statistical registers, which as a footprint, leave the students in face-to-face courses in the virtual campus, moddle platform. For this purpose, markers that identify progress in the learning process are established, according to a prefixed rubric, and supplemented with information from ad-hoc questionnaires, as well as the grades obtained and their correlations. As a case, descriptive results are presented of an accumulated group of students of the Master's Degree in Teacher Training, in the specialty of Economics and Business Administration of the UCM, which allow to define different typologies in their approach to materials, with differentiated patterns of learning according to the digital gaps.
- PublicationOpen AccessLarge scale analytics of global and regional MOOC providers: differences in learners’ demographics, preferences, and perceptions(Elsevier, 2022-04) Ruipérez Valiente, José A.; Staubitz, Thomas; Jenner, Matt; Halawa, Sherif; Zhang, Jiayin; Despujol, Ignacio; Maldonado-Mahauad, Jorge; Montoro, German; Peffer, Melanie; Rohloff, Tobias; Lane, Jenny; Turro, Carlos; Li, Xitong; Pérez-Sanagustín, Mar; Reich, Justin; Ingeniería de la Información y las ComunicacionesMassive Open Online Courses (MOOCs) remarkably attracted global media attention, but the spotlight has been concentrated on a handful of English-language providers. While Coursera, edX, Udacity, and FutureLearn received most of the attention and scrutiny, an entirely new ecosystem of local MOOC providers was growing in parallel. This ecosystem is harder to study than the major players: they are spread around the world, have less staff devoted to maintaining research data, and operate in multiple languages with university and corporate regional partners. To better understand how online learning opportunities are expanding through this regional MOOC ecosystem, we created a research partnership among 15 different MOOC providers from nine countries. We gathered data from over eight million learners in six thousand MOOCs, and we conducted a large-scale survey with more than 10 thousand participants. From our analysis, we argue that these regional providers may be better positioned to meet the goals of expanding access to higher education in their regions than the better-known global providers. To make this claim we highlight three trends: first, regional providers attract a larger local population with more inclusive demographic profiles; second, students predominantly choose their courses based on topical interest, and regional providers do a better job at catering to those needs; and third, many students feel more at ease learning from institutions they already know and have references from. Our work raises the importance of local education in the global MOOC ecosystem, while calling for additional research and conversations across the diversity of MOOC providers.
- PublicationOpen AccessMachine Learning para la mejora de la experiencia con MOOC : el caso de la Universitat Politècnica de València(Universidad de Murcia, Servicio de Publicaciones, 2021) Despujol Zabala, Ignacio; Martínez Navarro, Jorge ÁngelEl trabajo que se presenta tiene como objetivo el diseño de una propuesta de mecanismos automatizados fundamentados en machine learning para la mejora de la experiencia de los participantes en los cursos MOOC de la Universitat Politécnica de Valencia y la reducción de las tasas de abandono. Siguiendo una estrategia de investigación basada en el diseño IBD, en la que se ha priorizado siempre las decisiones pedagógicas por encima de las propias analíticas de datos, se han realizado tres iteraciones con distintos patrones metodológicos (revisión sistemática de literatura, machine learning basado en los datos de 260 cursos y más de 700.000 estudiantes, y creación de mecanismos automatizados) que siempre finalizan con la presentación de resultados y la realimentación por parte del equipo de la universidad. Las principales conclusiones de este trabajo indican que, de los veinticinco indicadores pedagógicos de abandono referidos por las revisiones bibliográficas en la iteración 1, solo se validan diez de ellos con los cursos de la UPV (no se tienen datos automáticos ni automatizables de los otros), y de esos finalmente solo seis de ellos son posibles predictores del abandono del alumnado, con los datos utilizados. Se proponen finalmente un conjunto de mecanismos automatizados que se aplicarán en la plataforma EdX de la universidad, para la mejora de la experiencia de los usuarios y la reducción de la tasa de abandonos en los cursos.
- PublicationOpen AccessPatterns of engagement in an educational massively multiplayer online game: A multidimensional view(IEEE, 2020-10) Ruipérez Valiente, José A.; Gaydos, Matthew; Rosenheck, Louisa; Kim, Yoon Jeon; Klopfer, Eric; Ingeniería de la Información y las ComunicacionesLearning games have great potential to become an integral part of new classrooms of the future. One of the key reported benefits is the capacity to keep students deeply engaged during their learning process. Therefore, it is necessary to develop models that can measure quantitatively how learners are engaging with learning games to inform game designers and educators, and to find ways to maximize learner engagement. In this article, we present our proposal to multidimensionally measure engagement in a learning game over four dimensions: general activity, social, exploration, and quests. We apply metrics from these dimensions to data from The Radix Endeavor, an inquiry-based online game for STEM learning that has been tested in K-12 classrooms as part of a pilot study across numerous schools. Based on these dimensions, we apply clustering and report four different engagement profiles that we define as “integrally engaged,” “lone achiever,” “social explorer,” and “nonengaged.” We also use three variables (account type, class grade, and gender) to perform a cross-sectional analysis finding interesting, statistically significant differences in engagement. For example, in-school students and accounts registered to males engaged socially much more than out-of-school learners or accounts registered to females, and that older students have better performance metrics than younger ones.