Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    New user? Click here to register.
Repository logo

Repositorio Institucional de la Universidad de Murcia

Repository logoRepository logo
  • Communities & Collections
  • All of DSpace
  • menu.section.collectors
  • menu.section.acerca
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    New user? Click here to register.
  1. Home
  2. Browse by Subject

Browsing by Subject "Estrous cycle"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Publication
    Open Access
    Acute and chronic estrogen supplementation decreases uterine sympathetic innervation in ovariectomized adult virgin rats
    (F. Hernández y Juan F. Madrid. Universidad de Murcia: Departamento de Biología Celular e Histología, 2001) Zoubina, E. V.; Mize, A. L.; Alper, R. H.; Smith, P. G.
    Uterine innervation undergoes substantial reorganization associated with changes in reproductive status. Nerves innervating the uterus are decreased in pregnancy and puberty, and even the normal rodent estrous cycle is characterized by fluctuations in numbers of myometrial nerve fibers. During the follicular (proestrus/estrous) phase of the estrous cycle, intact nerves are rapidly depleted and then return over the next 2-3 days in the luteal (metestrus/diestrus) phase. We hypothesize that uterine nerve depletion is initiated by increased circulating estrogen in the follicular phase . However, studies have not shown whether estrogen can reduce uterine innervation and, if so, whether the time course is compatible with the rapid changes observed in the estrous cycle. These questions were addressed in the present study. Mature ovariectomized virgin rats received 17-B-estradiol as a single injection (10 .ug/kg s.c.) or chronically from timed-release pellets (0.1 .ug/pellet for 3 weeks sustained release). Total (protein gene-product 9.S-immunoreactive) and sympathetic (dopamine B-hydroxylase-immunoreactive) uterine innervation was assessed quantitatively. Both total and sympathetic innervation was abundant in uterine longitudinal smooth muscle of ovariectomized rats. However, following acute or chronic estrogen administration, total and sympathetic fiber numbers were markedly decreased. This was not due to altered uterine size, as reductions persisted after correcting for size differences. Our results indicate that sympathetic nerves are lost from uterine smooth muscle after estradiol treatment in a manner similar to that seen in the intact animal during estrus and pregnancy. This suggests that the rise in estradiol prior to estrus is sufficient to deplete uterine sympathetic innervation.
  • Loading...
    Thumbnail Image
    Publication
    Open Access
    Immunohistochemical determination of mTOR pathway molecules in ovaries and uterus in rat estrous cycle stages
    (Universidad de Murcia, Departamento de Biologia Celular e Histiologia, 2020) Ekizceli, Gulcin; Inan, Sevinc; Oktem, Gulperi; Onur, Ece; Ozbilgin, Kemal
    mTOR is a member of the PI3K/Akt/mTOR signaling pathway that participates in cell growth, proliferation, protein synthesis, transcription, angiogenesis, apoptosis and autophagy. mTOR and MAPK pahways are two important key signal pathways which are related to each other. We investigated the role of mTOR and other signaling molecules in rat ovaries and uteruses in stages of the estrous cycle. Young adult female rats were divided into four groups as proestrous, estrous, metestrous and diestrous according to vaginal smears. Immunohistochemical staining of mTORC1, IGF1, PI3K, pAKT1/2/3, ERK1 and pERK1/2 was performed and pAKT1/2/3 and ERK1 were also analyzed using western blotting on ovarian and uterine tissue samples. According to our results, PI3K/Akt/ mTOR and ERK/pERK showed an increase in the rat ovulation period. When all the groups were evaluated the immunoreactivities for all of the antibodies were detected in the oocytes, granulosa and theca cells, corpus luteum and stroma of ovary and lamina propria, surface and glandular epithelium of uterus with the strongest observed with anti-ERK1 antibody and then with a decreasing trend with anti-mTORC1, anti-pAkt1/2/3, anti-IGF1, anti-PI3K and anti-pERK1/2 antibodies in the proestrus and estrus stages. Differently from other parts of the ovary, highest antibody expression in the corpus luteum was observed in the metestrous stage. Moreover, the existence of pAKT1/2/3 and ERK1 proteins was confirmed with the Western blotting technique. We suggest that mTOR and mTOR-related ERK signaling molecules may participate in the rat ovulation process.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Accessibility
  • Send Feedback