Browsing by Subject "ERK"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- PublicationOpen AccessBATF is involved in the malignant phenotype and epithelial-mesenchymal transition of colon cancer cells via ERK/PD-L1 signaling(Universidad de Murcia, Departamento de Biologia Celular e Histiologia, 2025) Chen, Xiaoqiong; Dong, Huaqian; Jin, LipingObjective. Transcription factors have emerged as primary regulators in colon cancer. Basic Leucine Zipper Transcription Factor (BATF) was found to be differentially expressed in colon cancer. This study aimed to explore the impact of BATF on the malignant phenotype and epithelial-mesenchymal transition (EMT) process. Methods. Based on The Cancer Genome Atlas (TCGA) data, the correlation between BATF and patients’ overall prognosis was analyzed. BATF expression in epithelial and colon cancer cells was evaluated. By knocking down its levels in colon cancer cells, its effects on the malignant phenotype, apoptosis, EMT progression, and ERK/PD-L1 were evaluated. Cells were treated with ERK/PD-L1 agonists, and the BATF cell regulation was re-examined. Results. BATF levels were negatively correlated with patients’ overall survival. BATF is upregulated in colon cancer cell lines, and BATF knockdown in HCT116 cells suppressed the malignant cellular phenotypes (proliferation, migration, and invasion) and increased apoptosis. BATF knockdown inhibited EMT and ERK/PD-L1 signaling activation, whereas upon agonist treatment, BATF potency was disrupted. Conclusion. This study revealed that BATF is involved in the malignant phenotype and EMT of colon cancer cells, and this process may be mediated by ERK/PD-L1 signaling
- PublicationOpen AccessImmunohistochemical determination of mTOR pathway molecules in ovaries and uterus in rat estrous cycle stages(Universidad de Murcia, Departamento de Biologia Celular e Histiologia, 2020) Ekizceli, Gulcin; Inan, Sevinc; Oktem, Gulperi; Onur, Ece; Ozbilgin, KemalmTOR is a member of the PI3K/Akt/mTOR signaling pathway that participates in cell growth, proliferation, protein synthesis, transcription, angiogenesis, apoptosis and autophagy. mTOR and MAPK pahways are two important key signal pathways which are related to each other. We investigated the role of mTOR and other signaling molecules in rat ovaries and uteruses in stages of the estrous cycle. Young adult female rats were divided into four groups as proestrous, estrous, metestrous and diestrous according to vaginal smears. Immunohistochemical staining of mTORC1, IGF1, PI3K, pAKT1/2/3, ERK1 and pERK1/2 was performed and pAKT1/2/3 and ERK1 were also analyzed using western blotting on ovarian and uterine tissue samples. According to our results, PI3K/Akt/ mTOR and ERK/pERK showed an increase in the rat ovulation period. When all the groups were evaluated the immunoreactivities for all of the antibodies were detected in the oocytes, granulosa and theca cells, corpus luteum and stroma of ovary and lamina propria, surface and glandular epithelium of uterus with the strongest observed with anti-ERK1 antibody and then with a decreasing trend with anti-mTORC1, anti-pAkt1/2/3, anti-IGF1, anti-PI3K and anti-pERK1/2 antibodies in the proestrus and estrus stages. Differently from other parts of the ovary, highest antibody expression in the corpus luteum was observed in the metestrous stage. Moreover, the existence of pAKT1/2/3 and ERK1 proteins was confirmed with the Western blotting technique. We suggest that mTOR and mTOR-related ERK signaling molecules may participate in the rat ovulation process.
- PublicationOpen AccessNRF3 suppresses the metastasis of triple-negative breast cancer cells by inhibiting ERK activation in a ROS-dependent manner(Universidad de Murcia, Departamento de Biologia Celular e Histiologia, 2025) Zheng, Chenhui; Pan, Yue; Lin, Bangyi; Li, Jin; Chen, Qi; Zheng, ZhibaoPurpose. Our previous study demonstrated that NRF3 (NFE2L3, Nuclear Factor-erythroid 2-related factor 3) could suppress cell metastasis and proliferation in breast cancer. In this study, we investigated the mechanisms underlying its function in breast cancer. Methods. In the present study, NRF3 expression and its clinical characteristics in breast cancer were analyzed using public datasets and clinical specimens. After breast cancer cells were overexpressed NRF3, FACS was used to detect the intracellular ROS levels. The migration and invasion activities of NRF3-ectopic expressed breast cancer cells were determined by transwell assay. To validate the role of ROS/ERK axis in the inhibitory effect of NRF3 in cell metastasis, ROS scavenger NAC was also included. Results. We found that NRF3 mRNA was highly expressed, while NRF3 protein was extremely lowly expressed in breast cancer tissues compared with their normal counterparts, and low level NRF3 was associated with poorer prognosis in patients with triple negative breast cancer (TNBC). More interestingly, over-expression of NRF3 protein significantly increased cellular ROS production and dramatically decreased p-ERK level and cell migration in TNBC cells. Mechanistically, NRF3 protein was found to be mutually regulated by valosin-containing protein (VCP). Strikingly, VCP-knockdown dramatically increased NRF3 protein expression, but NRF3-knockin also decreased VCP expression in return. Moreover, antioxidant NAC treatment effectively increased the level of p-ERK and VCP expression, as well as cell migration and invasion abilities of TNBC cells. Conclusion. NRF3, a tumor suppressor down-regulated by VCP, could attenuate cell metastasis in TNBC cells by increasing cellular ROS accumulation and subsequently inhibiting the ERK phosphorylation.